Pengolahan Citra Wajah dengan CNN untuk Absensi
Abstract
Face Recognition Using CNN for Attendance. Collecting Facial recognition systems included in the field of image processing can be integrated into attendance, where attendance can be done using faces to make it easier for employees to attend attendance and reduce the level of cheating in attendance because attendance must be done by employees directly. This research analyzes image processing which is integrated with data set with python programming language and OpenCV library. The face recognition process uses facial recognition based on image feature extraction. This study aims to implement computer vision into a simple face detection system by utilizing the existing libraries in OpenCV and using the Python programming language as the foundation of the system. This study aims to analyze computer vision in a simple face detection system by utilizing the existing library in OpenCV as well as utilizing the Python programming language as the foundation of the system and applying the Convolution Neural Network method.
Keywords
Full Text:
PDFReferences
S. Program et al., “Sistem Pengenalan Wajah pada Absensi,” vol. 11, no. April, pp. 1–4, 2016.
R. Y. Endra, A. Cucus, F. N. Afandi, and M. B. Syahputra, “Deteksi Objek Menggunakan Histogram of Oriented Gradient (Hog) Untuk Model Smart Room,” Explor. J. Sist. Inf. dan Telemat., vol. 9, no. 2, 2018, doi: 10.36448/jsit.v9i2.1075.
R. Caldelli, L. Galteri, I. Amerini, and A. Del Bimbo, “Optical Flow based CNN for detection of unlearnt deepfake manipulations,” Pattern Recognit. Lett., vol. 146, pp. 31–37, 2021, doi: 10.1016/j.patrec.2021.03.005.
L. Li, X. Feng, Z. Boulkenafet, Z. Xia, M. Li, and A. Hadid, “An original face anti-spoofing approach using partial Convolutional Neural Network,” 2016 6th Int. Conf. Image Process. Theory, Tools Appl. IPTA 2016, no. i, pp. 7–12, 2017, doi: 10.1109/IPTA.2016.7821013.
R. N. Anissa and R. T. Prasetio, “Rancang Bangun Aplikasi Penerimaan Siswa Baru Berbasis Web Menggunakan Framework Codeigniter,” J. Responsif Ris. Sains dan Inform., vol. 3, no. 1, pp. 122–128, 2021, doi: 10.51977/jti.v3i1.497.
D. N. Zuraidah, M. F. Apriyadi, A. R. Fatoni, M. Al Fatih, and Y. Amrozi, “Menelisik Platform Digital Dalam Teknologi Bahasa Pemrograman,” Teknois J. Ilm. Teknol. Inf. dan Sains, vol. 11, no. 2, pp. 1–6, 2021, doi: 10.36350/jbs.v11i2.107.
A. Sitohang and I. Taufik, “Pendeteksian Wajah Manusia Pada Citra Digital Menggunakan Template Matching,” J. Teknol. dan Ilmu Komput. Prima, vol. 1, no. 2, pp. 81–86, 2018, doi: 10.34012/jutikomp.v1i2.248.
R. Budiarto Hadiprakoso and I. K. S. Buana, “Deteksi Serangan Spoofing Wajah Menggunakan Convolutional Neural Network,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 3, Dec. 2021, doi: 10.28932/jutisi.v7i3.4001.
P. D. Sugiyono, Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: Alfabeta, 2013.
M. E. Khan, “Different approaches to white box testing technique for finding errors,” Int. J. Softw. Eng. its Appl., vol. 5, no. 3, pp. 1–14, 2011, doi: 10.5121/ijsea.2011.2404.
DOI: http://dx.doi.org/10.36448/expert.v14i1.3729
Refbacks
- There are currently no refbacks.
EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi
Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA
Indexed by:
This work is licensed under a Creative Commons Attribution 4.0 International License.