Klasifikasi Tingkat Kematangan Pisang dengan YOLOv11 untuk Pengurangan Food Loss and Waste

Rezky Dwi Ananda, Anna Dina Kalifia

Abstract


Food loss and waste (FLW) is a serious issue in the global food system, including in the banana commodity sector. One of the main challenges lies in the manual fruit sorting process, which is prone to errors and inconsistencies due to human subjectivity. Although various deep learning approaches have been applied to fruit ripeness classification, most previous studies still rely on earlier versions of the YOLO model or conventional CNNs, which are limited in handling visual variations and detecting small objects in real-time. This study proposes the application of the YOLOv11 algorithm, a state-of-the-art deep learning model in computer vision, to automate the visual classification of banana ripeness levels. Leveraging YOLOv11's strengths in real-time object detection, the system is designed to categorize bananas into four ripeness classes. Experimental results show that the model achieved an mAP@0.5 of 0.835, with the highest precision of 0.934 and an average inference time of 63.8 milliseconds per image. Extreme classes such as unripe and overripe yielded high accuracy, while transitional classes experienced performance drops due to visual similarity. This approach is expected to support food loss reduction, improve sorting efficiency, and enhance the competitiveness of horticultural products in both domestic and export markets.

Keywords


banana ripeness classification; deep learning; food loss and waste; YOLOv11 computer vision.

Full Text:

PDF

References


F. R. Ramadhan, “Sistem Pendeteksi Kematangan Pisang Menggunakan YOLOv5 Berbasis Internet of Things (IoT),” INTECOMS: Journal of Information Technology and Computer Science, vol. 8, no. 2, 2025,

doi: 10.31539/intecoms.v8i2.13637

R. A. H. Majdudin, “Pineapple Ripeness Detection Using YOLO v8 Algorithm,” PIJAR: Publication of the International Journal of Academic Research, vol. 1, no. 1, pp. 50-54, 2025, doi: 10.63222/pijar.v1i1.7

J. Liu, J. Guo, and S. Zhang, “YOLOv11-HRS: An improved model for strawberry ripeness detection,” Journal of Agricultural Informatics, vol. 15, no. 2, pp. 10–21, 2024, doi: 10.3390/agronomy15051026.

N. Banduka, K. Tomić, J. Živadinović, and M. Mladineo, “Automated dual-side leather defect detection and classification using YOLOv11: A case study in the finished leather industry,” Processes, vol. 12, no. 12, p. 2892, 2024, DOI: 10.3390/pr12122892.

M. M. Huda, K. A. Prasetyo, M. A. R. Vieri, R. Wulanningrum, and M. A. D. W. Dara, “Identifikasi mangga berdasarkan tingkat kematangan menggunakan YOLOv11,” in Prosiding Seminar Nasional Teknologi dan Sains, vol. 4, Universitas Nusantara PGRI Kediri, Kediri, Indonesia, Jan. 2025, e-ISSN: 2828–299X.

M. F. Ajizi, D. Syauqy, and M. H. H. Ichsan, “Klasifikasi kematangan buah pisang berbasis sensor warna dan sensor load cell menggunakan metode Naive Bayes,” JESSI, vol. 12, no. 2, pp. A89–A94, 2023.

A. Wahid, “Klasifikasi tingkat kematangan buah pisang dalam ruang warna RGB menggunakan jaringan syaraf tiruan (JST),” Jurnal Teknik Komputer, vol. 9, no. 1, pp. 15–21, 2023, doi: 10.26858/jessi.v2i1.20327.

J. D. Irawan, “Optimasi model klasifikasi tingkat kematangan buah pisang menggunakan fine-tuning MobileNetV2,” Jurnal Ilmiah Teknologi dan Komputer, vol. 8, no. 2, pp. 55–63, 2023.

G. F. Nama, “Pemantauan musang pandan menggunakan metode computer vision dengan model YOLOv11,” Jurnal Teknologi Informasi dan Komputer, vol. 10, no. 1, pp. 22–29, 2024.

M. P. Sirappa, “Potensi pengembangan tanaman pisang: Tinjauan syarat tumbuh dan teknik budidaya pisang dengan metode BIT,” Jurnal Hortikultura Tropis, vol. 6, no. 3, pp. 120–128, 2022.

S. Hartati, D. Pamungkas, and R. Farhan, “Rancang bangun alat ukur kematangan buah pisang berdasarkan warna dan berat menggunakan mikrokontroler ESP32,” in Prosiding Seminar Nasional Sistem Informasi dan Teknologi Informasi (SENSASI 2024), Universitas Teknologi Yogyakarta, Yogyakarta, Indonesia, Mar. 2024, ISSN: 2964-9871.

G. Ramadhani, R. C. Pratama, W. R. Yahya, and R. Wulanningrum, “Rancang bangun sistem deteksi buah jeruk menggunakan YOLOv8,” in Prosiding Seminar Nasional Teknologi dan Sains, vol. 4, Universitas Nusantara PGRI Kediri, Kediri, Indonesia, Jan. 2025, e-ISSN: 2828–299X.

P. Li, J. Zheng, P. Li, H. Long, M. Li, and L. Gao, “Tomato maturity detection and counting model based on MHSA-YOLOv8,” Sensors, 23(15):6701, 2023. DOI: 10.3390/s23156701.

M. Mao and M. Hong, “YOLO object detection for real-time fabric defect inspection in the textile industry: A review of YOLOv1 to YOLOv11,” Sensors, 25(7):2270, 2025. DOI: 10.3390/s25072270.

Y. Liao, L. Li, H. Xiao, F. Xu, B. Shan, and H. Yin, “YOLO-MECD: Citrus detection algorithm based on YOLOv11,” Agronomy, vol. 15, no. 3, p. 687, 2025, doi: 10.3390/agronomy15030687.

R. Khanam and M. Hussain, “YOLOv11: An overview of the key architectural enhancements,” arXiv preprint, Oct. 2024, doi: 10.48550/arXiv.2410.17725.

M. A. R. Alif, “YOLOv11 for vehicle detection: Advancements, performance, and applications in intelligent transportation systems,” arXiv preprint, 2024, doi: 10.48550/arXiv.2410.22898.

D. Pamungkas, “Diagnosa penyakit tanaman menggunakan YOLOv11: Studi kasus deteksi bercak coklat dan daun blast,” Jurnal Teknik Informatika dan Sains Komputer, vol. 12, no. 1, pp. 33–40, 2024.




DOI: http://dx.doi.org/10.36448/expert.v15i2.4626

Refbacks

  • There are currently no refbacks.


EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi

Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA

Indexed by:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.