SMARTGRAD: Prediksi Kelulusan Tepat Waktu Mahasiswa Kampus Merdeka
Abstract
On-time graduation is a primary indicator of student success and serves as a key benchmark for the quality of higher education institutions. This study aims to develop SmartGrad, a prediction model for on-time graduation based on the Naive Bayes algorithm, supported by feature selection using Decision Tree. The model integrates academic variables (semester GPA, average grades) and non-academic variables (types of MBKM, employment status, age) to produce accurate and contextual predictions. The research dataset comprises 313 entries with 17 attributes, processed through feature selection and classification stages. Evaluation results demonstrate the model's excellent performance, with an average accuracy of 88.8%, precision of 90.5%, recall of 97.9%, and an F1-score of 94.0%. The implementation of SmartGrad as an interactive web application based on Streamlit supports transparent and easily comprehensible decision-making. The novelty of this research lies in the integration of MBKM factors and employment status into the prediction model, as well as the application of an interpretable AI approach to support higher education policies and the achievement of Sustainable Development Goal 4 (Quality Education). These findings are expected to serve as a strategic reference for higher education administrators in enhancing academic quality and the effectiveness of the Freedom of Learning Independent Campus program.
Keywords
Full Text:
PDFReferences
A. Wibowo, D. Manongga, and H. D. Purnomo, “The utilization of naive bayes and C. 45 in predicting the timeliness of students’ graduation,” Sci. J. Informatics, vol. 7, no. 1, pp. 99–112, 2020.
D. Ifenthaler and D. Gibson, Adoption of Data Analytics in Higher Education Learning and Teaching. Springer, 2020.
Direktorat Jenderal Pendidikan Tinggi, Riset, dan Teknologi, Buku panduan Merdeka Belajar – Kampus Merdeka (Edisi II). 2024. [Online]. Available: https://dikti.kemdikbud.go.id/wp-content/uploads/2024/06/Buku-Panduan-Merdeka-Belajar-Kampus-Merdeka-MBKM-2024.pdf
TEM Journal, “Predicting Student Graduation Outcomes: An Evaluation of Project-Based Learning and Implementation of Naïve Bayes,” TEM J., vol. 14, no. 2, 2025.
International Journal of Computing and Digital Systems, “Comparative Analysis of Naïve Bayes and KNN Approaches to Predict Timely Graduation Using Academic History,” Int. J. Comput. Digit. Syst., vol. 16, no. 1, 2024.
AIP Conference Proceedings, “Predicting Graduate on Time Using Machine Learning,” in AIP Conference Proceedings, 2024.
M. F. Faradillah and I. Saluza, “Perbandingan Model Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree dan Naive Bayes,” Decod. J. Pendidik. Teknol. Inf., 2025.
A. Wahyudi, Kusrini, and F. W. Wibowo, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree dan Naïve Bayes,” J. Permata Indones., vol. 14, no. 2, pp. 132–138, 2023.
M. Julkarnain and Y. Yustiardin, “Penerapan Algoritma Naïve Bayes untuk Prediksi Kelulusan Mahasiswa,” J. Teknol. Inf. dan Komput., 2024.
I. Riadi, “Prediksi Kelulusan Tepat Waktu Berdasarkan Riwayat Akademik Menggunakan Metode K Nearest Neighbor,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 2, pp. 249–256, 2024.
M. Sivasakthi and K. R. A. Padmanabhan, “Prediction of Students Programming Performance Using Naïve Bayesian and Decision Tree,” in Soft Computing for Security Applications, Springer, 2022, pp. 97–106.
MUTHIAH RIANI HARAHAP, “SISTEM PREDIKSI KELULUSAN MAHASISWA PADA PROGRAM MBKM MENGGUNAKAN METODE FUZZY MAMDANI,” 2024.
H. Ermamtita, “Prediksi Kelulusan Mahasiswa Menggunakan Metode K-Means dan Random Forest,” J. Pendidik. dan Teknol. Indones., vol. 5, no. 1, pp. 209–214, 2025.
L. Setiyani, M. Wahidin, and D. Awaludin, “Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Naïve Bayes: Systematic Review,” Fakt. Exacta, vol. 13, no. 1, pp. 35–43, 2020.
V. G. Costa and C. E. Pedreira, “Recent advances in decision trees: an updated survey,” Artif. Intell. Rev., vol. 56, pp. 4765–4800, 2023, doi: 10.1007/s10462-022-10275-5.
P. Singh and B. Singh, “A Study of Data Mining Techniques for Student Performance Prediction,” Madurai, India: in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 2020, pp. 227–232.
M. A. A. M. M. N. Adnan, A. F. R. A. Rahman, N. A. H. A. Hamid, “Predicting student’s academic performance using data mining techniques: A systematic literature review,” IEEE Access, vol. 10, pp. 36723–36737, 2022, doi: 10.1109/ACCESS.2022.3163737.
and R. A. R. A. M. Salinitri, M. R. D. Girolamo, A. B. Petrova, “The impact of co-operative education on timely graduation: a competing risks analysis,” High. Educ., vol. 83, no. 5, pp. 1033–1050, 2022, doi: 10.1007/s10734-021-00746-6.
and T. T. T. T. T. L. T. Vo, H. T. T. Nguyen, “The impact of scholarships on academic performance: a case study in Vietnam,” Heliyon, vol. 8, no. 9, p. e10577, 2022, doi: 10.1016/j.heliyon.2022.e10577.
D. Ifenthaler, D.-K. Mah, dan J. Yin‑Kim Yau, Utilizing Learning Analytics to Support Study Success. Springer, 2019
C. Lang, G. Siemens, A. F. Wise, D. Gašević, dan A. Merceron (Eds.), Handbook of Learning Analytics, 2nd ed. SoLAR, 2022.
DOI: http://dx.doi.org/10.36448/expert.v15i2.4605
Refbacks
- There are currently no refbacks.
EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi
Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA
Indexed by:
This work is licensed under a Creative Commons Attribution 4.0 International License.






