Analisis ‘What-if’ Generatif untuk Evaluasi Ketahanan Model Prediksi Pertanian terhadap Perubahan Iklim
Abstract
Keywords
Full Text:
PDFReferences
T. Hu et al., “Climate change impacts on crop yields:
A review of empirical findings, statistical crop
models, and machine learning methods,”
Environmental Modelling & Software, vol. 179, p.
, Aug. 2024, doi:
1016/j.envsoft.2024.106119.
P. Pfleiderer et al., “Simulating compound weather
extremes responsible for critical crop failure with
stochastic weather generators,” Earth Syst. Dynam.,
vol. 12, no. 1, pp. 103–120, Feb. 2021, doi:
5194/esd-12-103-2021.
Z. Li, Z. Nie, and G. Li, “Integrating Crop
Modeling and Machine Learning for the Improved
Prediction of Dryland Wheat Yield,” Agronomy, vol.
, no. 4, p. 777, Apr. 2024, doi:
3390/agronomy14040777.
K. P. Swain et al., “Empowering Crop Selection
with Ensemble Learning and K-means Clustering:
A Modern Agricultural Perspective,” TOASJ, vol.
, no. 1, p. e18743315291367, Feb. 2024, doi:
2174/0118743315291367240207093403.
L. Benos, A. C. Tagarakis, G. Dolias, R. Berruto,
D. Kateris, and D. Bochtis, “Machine Learning in
Agriculture: A Comprehensive Updated Review,”
Sensors, vol. 21, no. 11, p. 3758, May 2021, doi:
3390/s21113758.
O. S. Olanrewaju, O. Oyatomi, O. O. Babalola, and
M. Abberton, “Genetic Diversity and
Environmental Influence on Growth and Yield
Parameters of Bambara Groundnut,” Front. Plant
Sci., vol. 12, p. 796352, Dec. 2021, doi:
3389/fpls.2021.796352.
S. M. Baluch et al., “Adaptation simulation and
planning for crop yield under climate change:
Integrating AquaCrop and DSSAT to project
drought-induced yield risks in the Sanjiang Plain,”
Agricultural Water Management, vol. 319, p. 109818,
Oct. 2025, doi: 10.1016/j.agwat.2025.109818.
D. Meyer, T. Nagler, and R. J. Hogan, “Copulabased synthetic data augmentation for machinelearning emulators,” Geosci. Model Dev., vol. 14, no. 8,
pp. 5205–5215, Aug. 2021, doi: 10.5194/gmd-14-
-2021.
F. Rostami Ghadi, K.-K. Wong, F. Javier LópezMartínez, C.-B. Chae, K.-F. Tong, and Y. Zhang, “A
Gaussian Copula Approach to the Performance
Analysis of Fluid Antenna Systems,” IEEE Trans.
Wireless Commun., vol. 23, no. 11, pp. 17573–17585,
Nov. 2024, doi: 10.1109/TWC.2024.3454558.
F. Benali, D. Bodénès, N. Labroche, and C. de
Runz, “MTCopula: Synthetic Complex Data
Generation Using Copula,” Proceedings of the 23rd
International Workshop on Design, Optimization,
Languages and Analytical Processing of Big Data
(DOLAP), pp. 51–60, 2021, doi:
https://hal.science/hal-03188317.
H. Tang, C. Liu, X. Zhang, X. Li, and X. Zhang,
“DGA Fault Diagnosis Method Based on Gaussian
Copula Data Augmentation and Transfer
Learning,” J. Electr. Eng. Technol., Aug. 2025, doi:
1007/s42835-025-02409-w.
P. Jutras-Dubé, M. B. Al-Khasawneh, Z. Yang, J.
Bas, F. Bastin, and C. Cirillo, “Copula-based
transferable models for synthetic population
generation,” Aug. 22, 2024, arXiv:
arXiv:2302.09193. doi: 10.48550/arXiv.2302.09193.
G. Leng and J. W. Hall, “Predicting spatial and
temporal variability in crop yields: an intercomparison of machine learning, regression and
process-based models,” Environ. Res. Lett., vol. 15,
no. 4, p. 044027, Apr. 2020, doi: 10.1088/1748-
/ab7b24.
G. De Los Campos, P. Pérez-Rodríguez, M.
Bogard, D. Gouache, and J. Crossa, “A data-driven
simulation platform to predict cultivars’
performances under uncertain weather conditions,”
Nat Commun, vol. 11, no. 1, p. 4876, Sept. 2020,
doi: 10.1038/s41467-020-18480-y.
N. Qomariyah, S. D. Putra, D. A. Afifah, A. R.
Supriyatna, and Z. Zuriati, “Applying Random
Forest for Optimal Crop Selection to Enhance
Agricultural Decision-Making,” in Proceedings of the
th International Conference on Applied Engineering
(ICAE 2024), vol. 251, L. Lumombo, A. Rahmi, S.
Suwarno, N. Ardi, and D. E. Kurniawan, Eds., in
Advances in Engineering Research, vol. 251. ,
This work is licensed under a DOI http://dx.doi.org/10.36448/expert.v15i2.4586
Creative Commons Attribution 4.0 International License e-ISSN 2745-7265 p-ISSN 2088-5555 EXPERT Vol. 15 No. 2
Dec 31, 2025 – Hal. 172
Dordrecht: Atlantis Press International BV, 2024,
pp. 66–77. doi: 10.2991/978-94-6463-620-8_6.
A. Aich, M. M. Murshed, S. Hewage, and A.
Mayeaux, “CopulaSMOTE: A Copula-Based
Oversampling Approach for Imbalanced
Classification in Diabetes Prediction,” Sept. 25,
, arXiv: arXiv:2506.17326. doi:
48550/arXiv.2506.17326.
R. Patel, “Crop Yield Prediction Dataset.” 2021.
Accessed: Sept. 30, 2025. [Online]. Available:
https://www.kaggle.com/datasets/patelris/cropyield-prediction-dataset
DOI: http://dx.doi.org/10.36448/expert.v15i2.4586
Refbacks
- There are currently no refbacks.
EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi
Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA
Indexed by:
This work is licensed under a Creative Commons Attribution 4.0 International License.






