Analisis ‘What-if’ Generatif untuk Evaluasi Ketahanan Model Prediksi Pertanian terhadap Perubahan Iklim

Nurul Qomariyah, Dian Ayu Afifah, Agiska Ria Supriyatna

Abstract


Global climate change directly affects agricultural productivity and increases uncertainty in crop yield prediction systems. Most machine learning models still rely on historical data that fail to represent extreme climate scenarios. This study proposes a data processing strategy based on generative simulation to evaluate the robustness of crop yield prediction models under synthetic climate perturbations. The Gaussian-based what-if analysis approach was applied to generate synthetic data that preserves the statistical characteristics of the original dataset. The baseline model employed a HistGradientBoostingRegressor, evaluated using R², MAE, RMSE, and Stability Index (SI) metrics. Experimental results achieved an R² of 0.9519, MAE of 1.08 t/ha, and SI values exceeding 0.95 across all simulated rainfall (±15%) and temperature (±2°C) scenarios. The Kolmogorov–Smirnov test confirmed that synthetic data distributions were not significantly different from the original (p > 0.05). These findings demonstrate that Gaussian-based generative simulation effectively enriches agricultural data and enables quantitative sensitivity evaluation of predictive models. The proposed approach aligns with the data-centric AI paradigm and supports the development of resilient, climate-adaptive smart agriculture systems

Keywords


crop yield prediction; climate perturbation; generative simulation; model robustness; what-if analysis

Full Text:

PDF

References


T. Hu et al., “Climate change impacts on crop yields:

A review of empirical findings, statistical crop

models, and machine learning methods,”

Environmental Modelling & Software, vol. 179, p.

, Aug. 2024, doi:

1016/j.envsoft.2024.106119.

P. Pfleiderer et al., “Simulating compound weather

extremes responsible for critical crop failure with

stochastic weather generators,” Earth Syst. Dynam.,

vol. 12, no. 1, pp. 103–120, Feb. 2021, doi:

5194/esd-12-103-2021.

Z. Li, Z. Nie, and G. Li, “Integrating Crop

Modeling and Machine Learning for the Improved

Prediction of Dryland Wheat Yield,” Agronomy, vol.

, no. 4, p. 777, Apr. 2024, doi:

3390/agronomy14040777.

K. P. Swain et al., “Empowering Crop Selection

with Ensemble Learning and K-means Clustering:

A Modern Agricultural Perspective,” TOASJ, vol.

, no. 1, p. e18743315291367, Feb. 2024, doi:

2174/0118743315291367240207093403.

L. Benos, A. C. Tagarakis, G. Dolias, R. Berruto,

D. Kateris, and D. Bochtis, “Machine Learning in

Agriculture: A Comprehensive Updated Review,”

Sensors, vol. 21, no. 11, p. 3758, May 2021, doi:

3390/s21113758.

O. S. Olanrewaju, O. Oyatomi, O. O. Babalola, and

M. Abberton, “Genetic Diversity and

Environmental Influence on Growth and Yield

Parameters of Bambara Groundnut,” Front. Plant

Sci., vol. 12, p. 796352, Dec. 2021, doi:

3389/fpls.2021.796352.

S. M. Baluch et al., “Adaptation simulation and

planning for crop yield under climate change:

Integrating AquaCrop and DSSAT to project

drought-induced yield risks in the Sanjiang Plain,”

Agricultural Water Management, vol. 319, p. 109818,

Oct. 2025, doi: 10.1016/j.agwat.2025.109818.

D. Meyer, T. Nagler, and R. J. Hogan, “Copulabased synthetic data augmentation for machinelearning emulators,” Geosci. Model Dev., vol. 14, no. 8,

pp. 5205–5215, Aug. 2021, doi: 10.5194/gmd-14-

-2021.

F. Rostami Ghadi, K.-K. Wong, F. Javier LópezMartínez, C.-B. Chae, K.-F. Tong, and Y. Zhang, “A

Gaussian Copula Approach to the Performance

Analysis of Fluid Antenna Systems,” IEEE Trans.

Wireless Commun., vol. 23, no. 11, pp. 17573–17585,

Nov. 2024, doi: 10.1109/TWC.2024.3454558.

F. Benali, D. Bodénès, N. Labroche, and C. de

Runz, “MTCopula: Synthetic Complex Data

Generation Using Copula,” Proceedings of the 23rd

International Workshop on Design, Optimization,

Languages and Analytical Processing of Big Data

(DOLAP), pp. 51–60, 2021, doi:

https://hal.science/hal-03188317.

H. Tang, C. Liu, X. Zhang, X. Li, and X. Zhang,

“DGA Fault Diagnosis Method Based on Gaussian

Copula Data Augmentation and Transfer

Learning,” J. Electr. Eng. Technol., Aug. 2025, doi:

1007/s42835-025-02409-w.

P. Jutras-Dubé, M. B. Al-Khasawneh, Z. Yang, J.

Bas, F. Bastin, and C. Cirillo, “Copula-based

transferable models for synthetic population

generation,” Aug. 22, 2024, arXiv:

arXiv:2302.09193. doi: 10.48550/arXiv.2302.09193.

G. Leng and J. W. Hall, “Predicting spatial and

temporal variability in crop yields: an intercomparison of machine learning, regression and

process-based models,” Environ. Res. Lett., vol. 15,

no. 4, p. 044027, Apr. 2020, doi: 10.1088/1748-

/ab7b24.

G. De Los Campos, P. Pérez-Rodríguez, M.

Bogard, D. Gouache, and J. Crossa, “A data-driven

simulation platform to predict cultivars’

performances under uncertain weather conditions,”

Nat Commun, vol. 11, no. 1, p. 4876, Sept. 2020,

doi: 10.1038/s41467-020-18480-y.

N. Qomariyah, S. D. Putra, D. A. Afifah, A. R.

Supriyatna, and Z. Zuriati, “Applying Random

Forest for Optimal Crop Selection to Enhance

Agricultural Decision-Making,” in Proceedings of the

th International Conference on Applied Engineering

(ICAE 2024), vol. 251, L. Lumombo, A. Rahmi, S.

Suwarno, N. Ardi, and D. E. Kurniawan, Eds., in

Advances in Engineering Research, vol. 251. ,

This work is licensed under a DOI http://dx.doi.org/10.36448/expert.v15i2.4586

Creative Commons Attribution 4.0 International License e-ISSN 2745-7265 p-ISSN 2088-5555 EXPERT Vol. 15 No. 2

Dec 31, 2025 – Hal. 172

Dordrecht: Atlantis Press International BV, 2024,

pp. 66–77. doi: 10.2991/978-94-6463-620-8_6.

A. Aich, M. M. Murshed, S. Hewage, and A.

Mayeaux, “CopulaSMOTE: A Copula-Based

Oversampling Approach for Imbalanced

Classification in Diabetes Prediction,” Sept. 25,

, arXiv: arXiv:2506.17326. doi:

48550/arXiv.2506.17326.

R. Patel, “Crop Yield Prediction Dataset.” 2021.

Accessed: Sept. 30, 2025. [Online]. Available:

https://www.kaggle.com/datasets/patelris/cropyield-prediction-dataset




DOI: http://dx.doi.org/10.36448/expert.v15i2.4586

Refbacks

  • There are currently no refbacks.


EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi

Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA

Indexed by:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.