Analisis Churn Menggunakan Metode K-Means Clustering Berdasarkan Model LRFM Untuk Meningkatkan Retensi Pada Mahes Printing

Bagus Joko Winarso, Diana Laily Fithri, Soni Adiyono

Abstract


In the competitive digital era, customer retention has become a critical factor for business sustainability, particularly in the digital printing industry which faces intense competition. Mahes Printing, despite recording a high transaction volume, continues to experience low repurchase rates due to fragmented and manual management of customer data and transaction history. This study aims to implement churn analysis within a Sales Management Information System using a Customer Relationship Management (CRM) approach supported by the LRFM (Length, Recency, Frequency, Monetary) model and the K-Means clustering algorithm. The results indicate that customers can be effectively grouped into three main clusters representing low, medium, and high churn risk levels. This segmentation facilitates the identification of customers with high churn potential, characterized by low Recency and Frequency values, thereby providing strategic insights to support data-driven decision-making and the development of more targeted and effective customer retention strategies.


Keywords


Churn analysis; customer retention; customer segmentation; LRFM; K-Means clustering; Customer Relationship Management (CRM)

Full Text:

PDF

References


N. Susanti, S. Adiyono, and Z. Romadhon, “Transformasi Digital: Aplikasi Manajemen Pemasaran Berbasis Web untuk PT. Arto Podomoro Mulyo,” J. Ilm. Komputasi, vol. 23, no. 1, pp. 93–104, 2024.

S. Adiyono, R. Aziz Risaldi, A. Puji Widodo, E. Sediyono, and K. Satya Wacana, “Framework Management To Minimize Risk in Protecting Enterprise Systems: Systematic Literature Review Pengelolaan Framework Untuk Meminimalisir Resiko Dalam Melindungi Sistem Enterprise: Tinjauan Pustaka Sistematik,” J. Inform. dan Teknol. Inf., vol. 19, no. 2, pp. 159–172, 2022, doi: 10.31515/telematika.v19i2.6534.

S. M. Jibran, N. Jannah, and D. I. P. Rahmani, “Pengembangan Sistem Informasi Manajemen Penjualan Berbasis Website untuk Meningkatkan Efisiensi Operasional pada Toko Win Glowing dengan Metode Waterfall,” J. Hum. Educ., vol. 5, no. 1, pp. 576–588, 2025.

S. Adiyono, D. L. Fithri, and M. Arifin, “Smart Aquaculture under Digital Transformation : AHP Approach for Optimizing Vannamei Shrimp Farming in Central Java,” vol. 10, no. 3, pp. 1015–1022, 2025.

M. A. Iskandar and U. Latifa, “Website Prediksi Customer churn Untuk Mempertahankan Pelanggan Pada Perusahaan Telekomunikasi,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1308–1316, 2023, doi: 10.36040/jati.v7i2.6639.

A. V. Alfiansah, A. Pusvitasari, and A. D. Kusumastuti, “Pengaruh Customer Relationship Management Terhadap Loyalitas Pelanggan (Studi Kasus Perusahaan Shopee Indonesia),” Bus. UHO J. Adm. Bisnis, vol. 9, no. 1, pp. 426–431, 2024.

C. A. Samosir, “Strategi Customer Relationship Management untuk Meningkatkan Retensi Pelanggan di Era Digital,” Repeater Publ. Tek. Inform. dan Jar., vol. 3, no. 1, pp. 160–173, 2025.

R. Wahyudi and A. Solihin, “Segmentasi Pelanggan Berdasarkan Model LRFM Menggunakan Algoritma K-Means dan Optimasi Klaster Dinamis,” J. Inform. J. Pengemb. IT, vol. 10, no. 3, pp. 640–650, 2025.

F. Soufitri, Konsep sistem informasi. PT Inovasi Pratama Internasional, 2023.

A. Selay et al., “Sistem Informasi Penjualan,” Karimah Tauhid, vol. 2, no. 1, pp. 232–237, 2023.

P. P. Singh, F. I. Anik, R. Senapati, A. Sinha, N. Sakib, and E. Hossain, “Investigating customer churn in banking: A machine learning approach and visualization app for data science and management,” Data Sci. Manag., vol. 7, no. 1, pp. 7–16, 2024.

M. D. Setyawan et al., “Implementasi Customer Relationship Management (CRM) Berbasis Web dalam Meningkatkan Penjualan pada Perusahaan Almazone,” J. SITECH Sist. Inf. dan Teknol., no. Vol 7, No 2 (2024): JURNAL SITECH VOLUME 7 NO 2 TAHUN 2024, pp. 103–112, 2024, [Online]. Available: https://jurnal.umk.ac.id/index.php/sitech/article/view/13692/5180

T. N. Febrianti and P. Supriyoso, “Strategi Customer Relationship Management (CRM) Untuk Meningkatkan Customer Retention Pada PD. Putra I’S,” Pros. FRIMA (Festival Ris. Ilm. Manaj. Dan Akuntansi), vol. 1, no. 7, pp. 804–814, 2024.

F. Marisa, S. S. S. Ahmad, Z. I. M. Yusof, Fachrudin, and T. M. A. Aziz, “Segmentation model of customer lifetime value in Small and Medium Enterprise (SMEs) using K-Means Clustering and LRFM model,” Int. J. Integr. Eng., vol. 11, no. 3, pp. 169–180, 2019, doi: 10.30880/ijie.2019.11.03.018.

N. U. Jannah, N. Y. Setiawan, and W. Purnomo, “Segmentasi Pelanggan B2B dengan Model LRFM Menggunakan Algoritma K-Means,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 8, 2024.

A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. Tekno Kompak, vol. 15, no. 2, p. 25, 2021.

B. Sutara, F. Vulture, and R. Novianti, “Application of K-Means algorithm with CRISP-DM method in student data analysis as a support for promotion strategy,” Side Sci. Dev. J., vol. 1, no. 1, pp. 1–7, 2024.

G. Vardakas, I. Papakostas, and A. Likas, “Deep clustering using the soft silhouette score: Towards compact and well-separated clusters,” arXiv Prepr. arXiv2402.00608, 2024.

D. T. Haniva, J. A. Ramadhan, and A. Suharso, “Systematic Literature Review Penggunaan Metodologi Pengembangan Sistem Informasi Waterfall, Agile, dan Hybrid,” JIEET (Journal Inf. Eng. Educ. Technol., vol. 7, no. 1, pp. 36–42, 2023.

A. Gupta, “Comparative Study of Different SDLC Models,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. 11, pp. 73–80, 2021, doi: 10.22214/ijraset.2021.38736.

S. Khamis and M. Ahmad, “Visualising E-Commerce Customer Segmentation Through Clustering Methods,” in Knowledge Management International Conference, Springer, 2024, pp. 92–103.

Y. D. Wijaya and M. W. Astuti, “Pengujian blackbox sistem informasi penilaian kinerja karyawan PT Inka (persero) berbasis equivalence partitions,” J. Digit. Teknol. Inf., vol. 4, no. 1, pp. 22–26, 2021.




DOI: http://dx.doi.org/10.36448/expert.v15i2.4584

Refbacks

  • There are currently no refbacks.


EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi

Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA

Indexed by:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.