Analisis Performa Deteksi Cacar Monyet dengan Model Klasifikasi Gambar Menggunakan Teachable Machine dan Keras

Ali Nugroho Septihadi, Ilham Hidayatullah, Fredy Susanto

Abstract


Digital Image Detection of Monkeypox Disease Performance Analysis using Image Classification Model with Teachable Machine and Keras. Advancements in artificial intelligence technology, particularly in the field of machine learning, have opened up significant new opportunities for developing disease detection systems that are faster, more accurate, and more efficient. This study aims to analyze the performance of Teachable Machine and Keras models in classifying monkeypox images using a quantitative approach. A dataset of skin images with indications of monkeypox was collected for the development of image classification models using both tools. The results of the study show that the developed models accurately recognized images that had been seen during the training data for the "Monkey Pox" category. However, when faced with test images that had not been seen before, the models showed limitations in generalizing, indicating overfitting in that category. Conversely, for the "Other" category, the models were able to recognize well both in the training data and the test data, demonstrating better generalization capability in this category. Therefore, for future research, it is recommended to conduct a more in-depth evaluation of the use of Data Augmentation techniques to expand data variation, as well as to explore other platforms or tools that can provide greater control over test data management.


Keywords


Disease Detection; Machine Learning; Model Accuracy; Teachable Machine; Akurasi Model; Deteksi Penyakit; Pembelajaran Mesin

Full Text:

PDF

References


F. D. Telaumbanua, P. Hulu, T. Z. Nadeak, R. R. Lumbantong, and A. Dharma, “Penggunaan Machine Learning Di Bidang Kesehatan,” J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 2, pp. 391–399, 2020, doi: 10.34012/jutikomp.v2i2.657.

L. Budiyarto, A. A. Sabila, and H. C. Putri, “Infeksi Cacar Monyet (Monkeypox),” J. Med. Hutama, vol. 4, no. 02 Januari, pp. 3224–3236, 2023.

D. Li, Y. Liu, K. Li, and L. Zhang, “Targeting F13 from monkeypox virus and variola virus by tecovirimat: Molecular simulation analysis,” J. Infect., vol. 85, no. 4, pp. e99–e101, 2022, doi: 10.1016/j.jinf.2022.07.001.

N. Malleswari, P. Yogendra Prasad, D. Prasad, M. N. Shetty, and N. Gupta, “Implementation of Machine Learning Based Google Teachable Machine in Early Childhood Education,” Artic. Int. J. Early Child. Spec. Educ., vol. 14, no. May, p. 2022, 2022, [Online]. Available: https://www.researchgate.net/publication/360438764

R. Conlin, K. Erickson, J. Abbate, and E. Kolemen, “Keras2c: A library for converting Keras neural networks to real-time compatible C,” Eng. Appl. Artif. Intell., vol. 100, 2021, doi: 10.1016/j.engappai.2021.104182.

J. Hung et al., “Keras R-CNN: Library for cell detection in biological images using deep neural networks,” BMC Bioinformatics, vol. 21, no. 1, pp. 1–7, 2020, doi: 10.1186/s12859-020-03635-x.

D. Gupta, “Image segmentation Keras: Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras,” ArXiv, vol. abs/2307.1, pp. 1–5, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:260155027

M. Carney et al., “Teachable Machine: Approachable Web-Based Tool for Exploring Machine Learning Classification,” in Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, in CHI EA ’20. New York, NY, USA: Association for Computing Machinery, 2020, pp. 1–8. doi: 10.1145/3334480.3382839.

E. A. U. Malahina, R. P. Hadjon, and F. Y. Bisilisin, “Teachable Machine: Real-Time Attendance of Students Based on Open Source System,” IJICS (International J. Informatics Comput. Sci., vol. 6, no. 3, p. 140, 2022, doi: 10.30865/ijics.v6i3.4928.

M. Altun, H. Gürüler, O. Özkaraca, F. Khan, J. Khan, and Y. Lee, “Monkeypox Detection Using CNN with Transfer Learning,” Sensors, vol. 23, no. 4, 2023, doi: 10.3390/s23041783.

T. O. Saputra and D. Alamsyah, “Klasifikasi Penyakit Cacar Monyet Menggunakan,” Mdp Student Conf., pp. 179–184, 2023.

P. S. Fransisca and N. Matondang, “Deteksi Citra Digital Penyakit Cacar Monyet menggunakan Algoritma Convolutional Neural Network dengan Arsitektur MobileNetV2,” J. Ilmu Komput. dan Agri-Informatika, vol. 10, no. 2, pp. 200–211, 2023, doi: 10.29244/jika.10.2.200-211.

T. Nayak et al., “Deep learning based detection of monkeypox virus using skin lesion images,” Med. Nov. Technol. Devices, vol. 18, no. March, p. 100243, 2023, doi: 10.1016/j.medntd.2023.100243.

S. N. Ali et al., “Monkeypox Skin Lesion Detection Using Deep Learning Models: A Feasibility Study,” pp. 2–5, 2022, [Online]. Available: http://arxiv.org/abs/2207.03342

S. Forchhammer, A. Abu-ghazaleh, G. Metzler, and C. Garbe, “Development of an Image Analysis-Based Prognosis Score Using Google ’ s Teachable Machine in Melanoma,” 2022.

E. Rasywir, R. Sinaga, and Y. Pratama, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN),” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 117–123, 2020, doi: 10.31294/p.v22i2.8907.

M. Fasounaki, E. B. Yüce, S. Öncül, and G. Ince, “CNN-based Text-independent Automatic Speaker Identification Using Short Utterances,” Proc. - 6th Int. Conf. Comput. Sci. Eng. UBMK 2021, vol. 01, pp. 413–418, 2021, doi: 10.1109/UBMK52708.2021.9559031.

M. A. Hossain and M. S. Alam Sajib, “Classification of Image using Convolutional Neural Network (CNN),” Glob. J. Comput. Sci. Technol., vol. 19, no. May, pp. 13–18, 2019, doi: 10.34257/gjcstdvol19is2pg13.

T. Islam, M. A. Hussain, F. U. H. Chowdhury, and B. M. R. Islam, “A Web-scraped Skin Image Database of Monkeypox, Chickenpox, Smallpox, Cowpox, and Measles,” bioRxiv, pp. 1–12, 2022, doi: 10.1101/2022.08.01.502199.

C. Chazar and M. H. Rafsanjani, “Penerapan Teachable Machine Pada Klasifikasi Machine Learning Untuk Identifikasi Bibit Tanaman,” Pros. Semin. Nas. Inov. dan Adopsi Teknol., vol. 2, no. 1, pp. 32–40, 2022, doi: 10.35969/inotek.v2i1.207.

C. Dabakoglu, “Artificial Neural Network with Keras,” Medium, 2018, [Online]. Available: https://medium.com/@cdabakoglu/artificial-neural-network-with-keras-d858f82f90c5 (diakses: Juni 2024).




DOI: http://dx.doi.org/10.36448/expert.v14i1.3623

Refbacks

  • There are currently no refbacks.


EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi

Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA

Indexed by:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.