Implementasi Convolutional Neural Network untuk Klasifikasi Penyakit Daun pada Tanaman Jagung
Abstract
Keywords
Full Text:
PDFReferences
X. Sun and H. Huo, “Corn leaf disease recognition based on improved EfficientNet,” IET Image Process., vol. 19, no. 1, pp. 1–12, 2025, doi: 10.1049/ipr2.13288
M. Tariq et al., “Corn leaf disease: insightful diagnosis using VGG16 empowered by explainable AI,” Front. Plant Sci., vol. 15, no. June, pp. 1–12, 2024, doi: 10.3389/fpls.2024.1402835
X. Zhang, Y. Qiao, F. Meng, C. Fan, and M. Zhang, “Identification of maize leaf diseases using improved deep convolutional neural networks,” IEEE Access, vol. 6, pp. 30370–30377, 2018, doi: 10.1109/ACCESS.2018.2844405
N. Ermias, B. Mesfin, D. Chaka, A. Gezahegn, S. Bikila, and W. Teshome, Transforming agriculture with Machine Learning , Deep Learning , and IoT : perspectives from Ethiopia — challenges and opportunities. Springer International Publishing, 2024. doi: 10.1007/s44279-024-00066-7
F. Rajeena P. P, A. S. U, M. A. Moustafa, and M. A. S. Ali, “Detecting Plant Disease in Corn Leaf Using EfficientNet Architecture—An Analytical Approach,” Electron., vol. 12, no. 8, 2023, doi: 10.3390/electronics12081938
R. Ahila Priyadharshini, S. Arivazhagan, M. Arun, and A. Mirnalini, “Maize leaf disease classification using deep convolutional neural networks,” Neural Comput. Appl., vol. 31, no. 12, pp. 8887–8895, 2019, doi: 10.1007/s00521-019-04228-3
J. Kusuma, Rubianto, R. Rosnelly, Hartono, and B. H. Hayadi, “Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors dan Multilayer Perceptron,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 1–6, 2023, doi: 10.52158/jacost.v4i1.484
A. Pfordt and S. Paulus, “A review on detection and differentiation of maize diseases and pests by imaging sensors,” J. Plant Dis. Prot., vol. 132, no. 1, pp. 1–21, 2025, doi: 10.1007/s41348-024-01019-4
G. Mohyuddin, M. A. Khan, A. Haseeb, S. Mahpara, M. Waseem, and A. M. Saleh, “Evaluation of Machine Learning Approaches for Precision Farming in Smart Agriculture System: A Comprehensive Review,” IEEE Access, vol. 12, no. March, pp. 60155–60184, 2024, doi: 10.1109/ACCESS.2024.3390581
H. Zhou et al., “Maize Leaf Disease Recognition Based on Improved Convolutional Neural Network ShuffleNetV2,” Plants, vol. 13, no. 12, pp. 1–18, 2024, doi: 10.3390/plants13121621
R. Archana and P. S. E. Jeevaraj, Deep learning models for digital image processing: a review, vol. 57, no. 1. Springer Netherlands, 2024. doi: 10.1007/s10462-023-10631-z
S. Timilsina et al., “CNDD-Net: A Lightweight Attention-Based Convolutional Neural Network for Classifying Corn Nutritional Deficiencies and Leaf Diseases,” Electron., vol. 14, no. 7, pp. 1–21, 2025, doi: 10.3390/electronics14071482
C. Yin, T. Zeng, H. Zhang, W. Fu, L. Wang, and S. Yao, “Maize Small Leaf Spot Classification Based on Improved Deep Convolutional Neural Networks with a Multi-Scale Attention Mechanism,” Agronomy, vol. 12, no. 4, 2022, doi: 10.3390/agronomy12040906
S. A. Shah et al., “Application of Drone Surveillance for Advance Agriculture Monitoring by Android Application Using Convolution Neural Network,” Agronomy, vol. 13, no. 7, 2023, doi: 10.3390/agronomy13071764
R. Rashid, W. Aslam, R. Aziz, and G. Aldehim, “An Early and Smart Detection of Corn Plant Leaf Diseases Using IoT and Deep Learning Multi-Models,” IEEE Access, vol. 12, no. February, pp. 23149–23162, 2024, doi: 10.1109/ACCESS.2024.3357099
W. Shafik, A. Tufail, C. Liyanage De Silva, and R. A. Awg Haji Mohd Apong, “A novel hybrid inception-xception convolutional neural network for efficient plant disease classification and detection,” Sci. Rep., vol. 15, no. 1, p. 3936, 2025, doi: 10.1038/s41598-024-82857-y
T. A. Prasetyo, V. L. Desrony, H. F. Panjaitan, R. Sianipar, and Y. Pratama, “Corn plant disease classification based on leaf using residual networks-9 architecture,” Int. J. Electr. Comput. Eng., vol. 13, no. 3, pp. 2908–2920, 2023, doi: 10.11591/ijece.v13i3.pp2908-2920
A. Ahmad, D. Saraswat, A. El Gamal, and G. Johal, “CD&S Dataset: Handheld Imagery Dataset Acquired Under Field Conditions for Corn Disease Identification and Severity Estimation,” 2021, [Online]. Available: http://arxiv.org/abs/2110.12084
R. Poojary, R. Raina, and A. K. Mondal, “Effect of data-augmentation on fine-tuned cnn model performance,” IAES Int. J. Artif. Intell., vol. 10, no. 1, pp. 84–92, 2021, doi: 10.11591/ijai.v10.i1.pp84-92
M. M. Malik et al., “A novel deep CNN model with entropy coded sine cosine for corn disease classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 7, p. 102126, 2024, doi: 10.1016/j.jksuci.2024.102126
R. S. Abdulsadig and E. Rodriguez-Villegas, “A comparative study in class imbalance mitigation when working with physiological signals,” Front. Digit. Heal., vol. 6, no. March, pp. 1–11, 2024, doi: 10.3389/fdgth.2024.1377165
DOI: http://dx.doi.org/10.36448/jsit.v16i2.4448
Refbacks
- There are currently no refbacks.
| About the Journal | Journal Policies | Author | Information |
Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika)
e-ISSN: 2686-181X
Website: http://jurnal.ubl.ac.id/index.php/explore
Email: explore@ubl.ac.id
Published by: Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Office: Jalan Zainal Abidin Pagar Alam No 89, Gedong Meneng, Bandar Lampung, Indonesia
