Analisis Sentimen Ketidakstabilan Harga Gabah Berbasis Data Twitter
Abstract
Full Text:
PDFReferences
J. Novák, P. Benda, E. Šilerová, J. Vaněk, and E. Kánská, “Sentiment Analysis in Agriculture,” Agris On-line Pap. Econ. Informatics, vol. 13, no. 1, pp. 121–130, 2021, doi: 10.7160/aol.2021.130109.
I. Surjandari, M. S. Naffisah, and M. I. Prawiradinata, “Text Mining of Twitter Data for Public Sentiment Analysis of Staple Foods Price Changes,” J. Ind. Intell. Inf., vol. 3, no. 3, pp. 253–257, 2014, doi: 10.12720/jiii.3.3.253-257.
Z. M. Basuki, R. J. Putra Hidayat, P. S. Asih, and I. T. Sihidi, “Analisis Kebijakan Impor Beras 1 Juta Ton Oleh Pemerintah Indonesia: Data Dan Analisis Media Sosial,” J. Acad. Praja, vol. 4, no. 2, pp. 474–495, 2021, doi: 10.36859/jap.v4i2.485.
R. A. Nandini, Y. A. Sari, and P. P. Adikara, “Analisis Sentimen Impor Beras 2018 Pada Twitter Menggunakan Metode Support Vector Machine dan Pembobotan Jumlah Retweet,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 4, pp. 3396–3406, 2019.
K. Sulastri, “Klasifikasi Naïve Bayes pada Analisis Sentimen atas Penolakan Dibukanya Larangan Ekspor Benih Lobster,” vol. 1, no. 2, pp. 68–75, 2020.
D. Sharma, M. Sabharwal, V. Goyal, and M. Vij, Sentiment Analysis Techniques for Social Media Data : A Review Sentiment Analysis Techniques for Social Media Data : A Review, no. January. Springer Singapore, 2020.
S. Yuliyanti, T. Djatna, and H. Sukoco, “Sentiment mining of community development program evaluation based on social media,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 15, no. 4, pp. 1858–1864, 2017, doi: 10.12928/TELKOMNIKA.v15i4.4633.
E. B. Santoso and A. Nugroho, “Analisis Sentimen Calon Presiden Indonesia 2019 Berdasarkan Komentar Publik Di Facebook,” Eksplora Inform., vol. 9, no. 1, pp. 60–69, 2019, doi: 10.30864/eksplora.v9i1.254.
N. Nigam and D. Yadav, “Lexicon-Based Approach to Sentiment Analysis of Tweets Using R Language : Second International Conference , ICACDS 2018 , Dehradun , India , April 20-21 , Lexicon-based approach to Sentiment Analysis of tweets using R language,” no. February 2019, pp. 372–380, 2018, doi: 10.1007/978-981-13-1810-8.
S. Aftab, M. Ahmad, and S. Aft, “Hybrid Tools and Techniques for Sentiment Analysis: A Review Related papers Tools and Techniques for Lexicon Driven Sent iment Analysis: A Review Machine Learning Techniques for Sent iment Analysis: A Review,” Int. J. Multidiscip. Sci. Eng., vol. 8, no. 4, 2017, [Online]. Available: www.ijmse.org.
Z. Liu, Y. Lin, and M. Sun, Representation Learning for Natural Language Processing. 2020.
C. Sammut and G. . Webb, Encyclopedia of Machine Learning and Data Mining. Springer, 2011.
M. Kubat, An Introduction to Machine Learning. 2017.
DOI: http://dx.doi.org/10.36448/jsit.v13i1.2197
Refbacks
- There are currently no refbacks.
About the Journal | Journal Policies | Author | Information |
Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika)
e-ISSN: 2686-181X
Website: http://jurnal.ubl.ac.id/index.php/explore
Email: explore@ubl.ac.id
Published by: Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Office: Jalan Zainal Abidin Pagar Alam No 89, Gedong Meneng, Bandar Lampung, Indonesia