Model Deteksi Penyakit Padi yang Efektif Berbasis Deep Learning
Abstract
Keywords
Full Text:
PDFReferences
H. Herdiyanti, Eko Sulistyono, and Purwono, “Pertumbuhan dan Produksi Beberapa Varietas Padi (Oryza sativa L.) pada Berbagai Interval Irigasi,” Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), vol. 49, no. 2, pp. 129–135, Sep. 2021, doi: 10.24831/jai.v49i2.36558.
M. Ulfi, M. I. A. Supriyanto, C. M. Sari, and S. A. Nuswantoro, “Identifikasi Penyakit pada Tanaman Padi Menggunakan Convolutional Neural Network (CNN),” Jurnal Sains Komputer dan Teknologi Informasi, vol. 7, no. 2, pp. 89–96, May 2025, doi: 10.33084/jsakti.v7i2.10061.
R. Sharma et al., “Plant Disease Diagnosis and Image Classification Using Deep Learning,” Computers, Materials & Continua, vol. 71, no. 2, pp. 2125–2140, 2022, doi: 10.32604/cmc.2022.020017.
A. Nayak, S. Chakraborty, and D. K. Swain, “Application of smartphone-image processing and transfer learning for rice disease and nutrient deficiency detection,” Smart Agricultural Technology, vol. 4, p. 100195, Aug. 2023, doi: 10.1016/j.atech.2023.100195.
D. S. Alwan and Mohammed. H. Naji, “Rice Diseases Classification by Residual Network 50 (RESNET50) and Support Vector Machine (SVM) Modeling,” Journal of Kufa for Mathematics and Computer, vol. 10, no. 1, pp. 96–101, Mar. 2023, doi: 10.31642/JoKMC/2018/100114.
G. Latif, S. E. Abdelhamid, R. E. Mallouhy, J. Alghazo, and Z. A. Kazimi, “Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model,” Plants, vol. 11, no. 17, p. 2230, Aug. 2022, doi: 10.3390/plants11172230.
F. Jiang, Y. Lu, Y. Chen, D. Cai, and G. Li, “Image recognition of four rice leaf diseases based on deep learning and support vector machine,” Comput Electron Agric, vol. 179, p. 105824, Dec. 2020, doi: 10.1016/j.compag.2020.105824.
Y. Liu, X. Yu, J. X. Huang, and A. An, “Combining integrated sampling with SVM ensembles for learning from imbalanced datasets,” Inf Process Manag, vol. 47, no. 4, pp. 617–631, 2011, doi: https://doi.org/10.1016/j.ipm.2010.11.007.
S. Mathulaprangsan, K. Lanthong, D. Jetpipattanapong, S. Sateanpattanakul, and S. Patarapuwadol, “Rice Diseases Recognition Using Effective Deep Learning Models,” in 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), IEEE, Mar. 2020, pp. 386–389. doi: 10.1109/ECTIDAMTNCON48261.2020.9090709.
V. Rajpoot, A. Tiwari, and A. S. Jalal, “Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods,” Multimed Tools Appl, vol. 82, no. 23, pp. 36091–36117, Sep. 2023, doi: 10.1007/s11042-023-14969-y.
K. M, V. D, M. K. Nath, and M. M, “Machine Learning Approaches for Automatic Disease Detection from Paddy Crops - A Review,” International Journal of Engineering Trends and Technology, vol. 70, no. 12, pp. 392–405, Dec. 2022, doi: 10.14445/22315381/IJETT-V70I12P237.
F. H. Hawari, F. Fadillah, M. R. Alviandi, and T. Arifin, “KLASIFIKASI PENYAKIT TANAMAN PADI MENGGUNAKAN ALGORITMA CNN (CONVOLUTIONAL NEURAL NETWORK),” Jurnal Responsif : Riset Sains dan Informatika, vol. 4, no. 2, pp. 184–189, Aug. 2022, doi: 10.51977/jti.v4i2.856.
DOI: http://dx.doi.org/10.36448/expert.v15i2.4454
Refbacks
- There are currently no refbacks.
EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi
Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA
Indexed by:
This work is licensed under a Creative Commons Attribution 4.0 International License.






