The Prediction of Subsidized Fertilizer Stock Using Least Square Support Vector Machine on The Kartu Petani Berjaya Aplication

Dika Hastanto, Dwi Romadhan

Abstract


Agriculture is one of the biggest commodities in Lampung, so that this also causes a lot of use and allocation of subsidized fertilizers. In terms of this it is very important to know how much amount of subsidized fertilizer needed in the future to prepare subsidized fertilizer stocks. The data needed was the time series data from subsidized fertilizer redemption data, using Least Square Support Machine and Autoregressive Integrated Moving Average methods to make a prediction model for subsidized fertilizer redemption. The result was hoped that we can find out how many harvests are in Lampung and the future subsidized fertilizer rations. This research was expected to provide benefits to the relevant parties.


Keywords


LSSVM, Kartu Petani Berjaya, Subsidized Fertilizer Prediction

Full Text:

PDF

References


V. P. Febrianti et al., “Analisis Pengaruh Perkembangan Teknologi Pertanian Di Era Revolusi Industri 4.0 Terhadap Hasil Produksi Padi,” Jurnal Pengolahan Pangan, vol. 6, no. 2, pp. 54–60, 2021, doi: 10.31970/pangan.v6i2.50.

F. T. da Silva, I. C. Baierle, R. G. de F. Correa, M. A. Sellitto, F. A. P. Peres, and L. M. Kipper, “Open Innovation in Agribusiness: Barriers and Challenges in the Transition to Agriculture 4.0,” Sustainability (Switzerland), vol. 15, no. 11, pp. 1–14, 2023, doi: 10.3390/su15118562.

Gubernur Lampung, Peraturan Gubernur (Pergub) Provinsi Lampung Nomor 9 Tahun 2020 tentang Program Kartu Petani Berjaya. 2020, pp. 1–9.

M. S. Tambunan, F. Nhita, and D. Triantoro, “Prediksi Penyakit Menggunakan Algoritma Differential Evolution ( DE ) dan Least Square Support Vector Machine ( LSSVM ) Untuk Data Berdimensi Tinggi Prediction Of Disease Using Differential Evolution ( DE ) and Least Square Support Vector Mchine ( LSSVM ),” vol. 3, no. 2, pp. 3778–3787, 2016.

C. Peña-Guzmán, J. Melgarejo, and D. Prats, “Forecasting Water Demand in Residential, Commercial, and Industrial Zones in Bogotá, Colombia, Using Least-Squares Support Vector Machines,” Math Probl Eng, vol. 2016, 2016, doi: 10.1155/2016/5712347.

F. H. Anuwar and A. M. Omar, “Future solar irradiance prediction using least square support vector machine,” Int J Adv Sci Eng Inf Technol, vol. 6, no. 4, pp. 520–523, 2016, doi: 10.18517/ijaseit.6.4.899.

D. F. Pramesti, Lahan, M. Tanzil Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 9, pp. 723–732, 2017, doi: 10.1109/EUMC.2008.4751704.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Computer Engineering, Science and System Journal, vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.

B. P. Candra, Kusrini, and H. A. Fatta, “Implementation of Trend Moment Method for Stock Prediction as Supporting Production,” J Phys Conf Ser, vol. 1140, no. 1, 2018, doi: 10.1088/1742-6596/1140/1/012031.

D. Desmonda, T. Tursina, and M. A. Irwansyah, “Prediksi Besaran Curah Hujan Menggunakan Metode Fuzzy Time Series,” Jurnal Sistem dan Teknologi Informasi (JUSTIN), vol. 6, no. 4, p. 141, 2018, doi: 10.26418/justin.v6i4.27036.

L. Yuliana, “Analisis Perencanaan Penjualan Dengan Metode Time Series (Studi Kasus Pada Pd. Sumber Jaya Aluminium),” Jurnal Mitra Manajemen, vol. 3, no. 7, pp. 780–789, 2019, doi: 10.52160/ejmm.v3i7.255.

A. Triyono, R. B. Trianto, and D. M. P. Arum, “Penerapan Least Squares Support Vector Machines (LSSVM) dalam Peramalan Indonesia Composite Index,” Jurnal Informatika Universitas Pamulang, vol. 6, no. 1, p. 210, 2021, doi: 10.32493/informatika.v6i1.10237.

S. Agriani, “Evaluasi Algoritma Peramalan Exponential Smoothing dan Holt-Winter’s Additive dalam Data Mining,” Seminar Nasional CORIS 2022, vol. 3, pp. 554–560, 2022, [Online]. Available: https://corisindo.stikom-bali.ac.id/penelitian/index.php/semnas/article/view/117%0Ahttps://corisindo.stikom-bali.ac.id/penelitian/index.php/semnas/article/download/117/87

V. No and D. A. Hidayanti, “Edumatic : Jurnal Pendidikan Informatika Penerapan Metode Weighted Moving Average pada Sistem Peramalan Stok Bahan Laundry,” vol. 8, no. 1, pp. 153–162, 2024, doi: 10.29408/edumatic.v8i1.25636.




DOI: http://dx.doi.org/10.36448/expert.v14i2.3976

Refbacks

  • There are currently no refbacks.


EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi

Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA

Indexed by:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.