Penilaian Kematangan Master Data Management: Studi Kasus Perusahaan XYZ

Eric Albetdron, Achmad Nizar Hidayanto

Abstract


[id] Master data adalah data yang paling berharga dengan prioritas tertinggi karena mewakili objek bisnis utama dan merupakan fondasi proses bisnis utama, kualitas master data yang buruk akan menurunkan kualitas dan menimbulkan permasalahan terkait data. Penelitian ini dilakukan untuk mengetahui level kematangan aktivitas master data management pada perusahaan XYZ yang melakukan digitalisasi proses bisnis mereka namun masih memiliki permasalahan yaitu data yang tidak konsisten, silo dan duplikasi data yang merujuk ke penyebab kurangnya kualitas pengelolaan master data. Untuk itu dilakukan penilaian untuk mengetahui level kematangan praktik master data management pada perusahaan dan sebagai landasan untuk melakukan aktivitas peningkatan kualitas data sebagai aset perusahaan dimasa mendatang dengan menggunakan model Spruit-Pietzka sebagai metodologi penilaian dan penyusunan kuisioner. Berdasarkan penilaian yang dilakukan level kematangan tidak berhasil mencapai level 1 karena topik data quality yang gagal mencapai level 1 sedangkan topik data model dan maintenance mencapai level 1, usage and Ownership mencapai level 2 dan data protection berada pada level 3. Level 1 dapat dicapai jika ada kebijakan standar kualitas master data dan pengetahuan kualitas aset data sebagai landasan pengukuran dan peningkatan kualitas data.

[en] Master data is the most valuable data with the highest priority because it represents the main business object and is the foundation of the main business process, poor master data quality will reduce quality and cause data-related problems. This research was conducted to determine the maturity level of master data management activities at XYZ company which digitized their business processes but still had problems such as inconsistent data, silos and data duplication which referred to the cause of the lack of quality of master data management. For this reason, an assessment is carried out to determine the maturity level of master data management practices in the company and as a basis for carrying out activities to improve data quality as a company asset in the future using the Spruit-Pietzka model as maturity assessment methodology and questionnaire development. Based on the assessment, the maturity level did not reach level 1 because the data quality topic failed to reach level 1 while the data model and maintenance topic reached level 1, usage and ownership reached level 2 and data protection was at level 3 Level 1 can be achieved if there is a master data quality standard policy and data asset quality knowledge as the basis for measuring and improving data quality.


Keywords


Master Data; Penilaian; Kematangan Master Data Management; Spruit-Pietzka; Assessment; Master Data Management Maturity

Full Text:

PDF

References


A. Ibrahim, I. Mohamed, and N. S. M. Satar, “Factors Influencing Master Data Quality: A Systematic Review,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 2, pp. 181–192, 2021, doi: 10.14569/IJACSA.2021.0120224.

H. Hannila, R. Silvola, J. Harkonen, and H. Haapasalo, “Data-driven Begins with DATA; Potential of Data Assets,” J. Comput. Inf. Syst., vol. 62, no. 1, pp. 29–38, 2022, doi: 10.1080/08874417.2019.1683782.

C. Ko, A. D. Adywiratama, and A. N. Hidayanto, “Master Data Management Maturity Model (MD3M) Assessment: A Case Study in Secretariat of Presidential Advisory Council,” in 2021 9th International Conference on Information and Communication Technology (ICoICT), Aug. 2021, pp. 359–363. doi: 10.1109/ICoICT52021.2021.9527507.

M. Spruit and K. Pietzka, “MD3M: The master data management maturity model,” Comput. Human Behav., vol. 51, pp. 1068–1076, 2015, doi: 10.1016/j.chb.2014.09.030.

P. Rishartati, N. D. Rahayuningtyas, J. Maulina, A. Adetia, and Y. Ruldeviyani, “Maturity assessment and strategy to improve master data management of geospatial data case study: Statistics Indonesia,” Proc. - 2019 5th Int. Conf. Sci. Technol. ICST 2019, 2019, doi: 10.1109/ICST47872.2019.9166400.

R. Iqbal, P. Yuda, W. Aditya, A. N. Hidayanto, P. Wuri Handayani, and N. C. Harahap, “Master data management maturity assessment: Case study of XYZ company,” Proc. ICAITI 2019 - 2nd Int. Conf. Appl. Inf. Technol. Innov. Explor. Futur. Technol. Appl. Inf. Technol. Innov., pp. 133–139, 2019, doi: 10.1109/ICAITI48442.2019.8982123.

C. Madera, “Master data and reference data in data lake ecosystems,” Data Lakes, pp. 123–143, 2020, doi: 10.1002/9781119720430.ch6.

R. I. P. Putra, J. P. Nurahman, R. R. Yana, H. Winarno, A. N. Hidayanto, and N. C. Harahap, “Master Data Management Planning: A Case Study of Flight Information System at PT Angkasa Pura i (Persero),” J. Phys. Conf. Ser., vol. 1444, no. 1, pp. 1–9, 2020, doi: 10.1088/1742-6596/1444/1/012017.

S. Hikmawati, P. I. Santosa, and I. Hidayah, “Improving Data Quality and Data Governance Using Master Data Management: A Review,” IJITEE (International J. Inf. Technol. Electr. Eng., vol. 5, no. 3, p. 90, 2021, doi: 10.22146/ijitee.66307.

T. Schaefer, B. Kieslinger, M. Brandt, and V. van den Bogaert, Evaluation in citizen science: The art of tracing a moving target. 2021. doi: 10.1007/978-3-030-58278-4_25.

S. Mrigen, “Relevance of Master Data Management in Pharmaceutical Industries,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 6, pp. 190–197, 2020, doi: 10.22214/ijraset.2020.6028.

E. Van der Merwe, “The Status of Material Master Data Management Implementation: Implications on Supply Chain Processes in FLSmidth,” University of Johannesburg (South Africa) PP - South Africa, South Africa, 2019. [Online]. Available: https://www.proquest.com/dissertations-theses/status-material-master-data-management/docview/2475813455/se-2?accountid=17242

S. Earley, D. Henderson, and Data Management Association., DAMA-DMBOK : data management body of knowledge. 2017.

W. Fan and F. Geerts, “Foundations of Data Quality Management,” Synth. Lect. Data Manag., 2022, doi: 10.1007/978-3-031-01892-3.

A. M. Radke, M. T. Dang, and A. Tan, “USING ROBOTIC PROCESS AUTOMATION (RPA) TO ENHANCE ITEM MASTER DATA MAINTENANCE PROCESS,” Sci. J. Logist., vol. 16, no. 1, pp. 129–140, 2020, doi: 10.17270/J.LOG.2020.380.




DOI: http://dx.doi.org/10.36448/expert.v13i2.3294

Refbacks

  • There are currently no refbacks.


EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi

Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA

Indexed by:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.