Implementasi Algoritma K-Means dan C-Means untuk Clustering Angka Kemiskinan

Chairul Habibi, Reni Nursyanti

Abstract


Implementation of K-Means and C-Means Algorithms for Clustering Poverty Numbers - Poverty is one of the problems that must be faced by developing countries, including Indonesia and especially the province of West Java. This problem is exacerbated by the Covid-19 pandemic. Poverty can also have other consequences, such as increased crime and death. To facilitate government programs and support, it is necessary to group cities/districts according to the poverty level. The analysis was carried out using the K-Means and Fuzzy C-Means algorithms with the Silhouette method to obtain the optimal number of clusters using RStudio tools. The purpose of this study is to compare which algorithm is based on the Davis-Bouldin Index validation test. Three of the five data generated, the K-Means and C-Means algorithms give the same results. Only poverty data and education data give different results. Based on the results of the Davies-Bouldin Index validation test, the fuzzy c-means and k-means algorithms show that the k-means algorithm is better at clustering with an average of 4.084271. Meanwhile, fuzzy c-means has an average validation score of 4.111375. The smaller the Davies-Bouldin Index value or the closer to 0 shows how good the cluster is.

Keywords


Angka Kemiskinan; C-Means; Fuzzy; K-Means; Poverty

Full Text:

PDF

References


Bahauddin, A., Fatmawati, A., & Sari, F. P. (2021). Analisis Clustering Provinsi di Indonesia Berdasarkan Tingkat Kemiskinan Menggunakan Algoritma K-Means. Jurnal Manajemen Informatika dan Sistem Informasi, 4(1), 1-8.

D Widyadhan, RB Hastuti, I Kharisudin. (2021). Perbandingan analisis klaster k-means dan average linkage untuk pengklasteran kemiskinan di Provinsi Jawa Tengah. PRISMA.

PN Safitri, R Aristawidya. (2021). Klasterisasi faktor-faktor kemiskinan di Provinsi Jawa Barat menggunakan k-medoids clustering.

Badan Pusat Statistik. (2021). “Data dan Informasi Kemiskinan Kabupaten/Kota Tahun 2021”. Badan Pusat Statistik, Jakarta. 161 hal.

NS Fatonah, TK Pancarani. (2022). Analisa Perbandingan Algoritma Clustering Untuk Pemetaan Status Gizi Balita Di Puskesmas Pasir Jaya.

Tan, P. N., Steinbach, M., & Kumar, V. (2006). Data mining introduction. People’s. Posts and Telecommunications Publishing House, Beijing.

B Budiman, R Nursyanti, RYR Alamsyah, I Akbar. (2020). Data mining implementation using naïve Bayes algorithm and decision tree J48 in determining concentration selection, International Journal of Quantitative Research and Modeling 1 (3), 123-134.

EF Yogachi, VM Nasution, G Prakarsa (2020). Design and Development of Fuzzy Logic Application Mamdani Method in Predicting the Number of Covid-19 Positive Cases in West Java, IOP Conference Series: Materials Science and Engineering 1115 (1).

AD Permana, VM Nasution, G Prakarsa (2020). Design and Development of Fuzzy Logic Application Tsukamoto Method in Predicting the Number of Covid-19 Positive Cases in West Java, International Journal of Global Operations Research 1 (2), 85-95.

Erlangga, E., & Dharmawan, Y. Y. (2018). Penentuan Penerima Kinerja Dosen Award melalui Metode Tsukamoto dengan Konsep Logika Fuzzy. Explore: Jurnal Sistem Informasi dan Telematika, 9(2), 331236.

G Prakarsa, VM Nasution (2021). Penerapan Logika Fuzzy Menggunakan Metode Mamdani Pada Prediksi Jumlah Kasus Positif Covid-19. Jurnal Media Informatika Budidarma 5 (4).

Ramadhan, A., Efendi, Z., & Mustakim, M. (2017). Perbandingan K-Means dan Fuzzy C-Means untuk Pengelompokan Data User Knowledge Modeling. In Seminar Nasional Teknologi Informasi Komunikasi dan Industri (pp. 219-226).

ALR Putri, N Dwidayati. Analisa perbandingan k-means dan fuzzy c-means dalam pengelompokan daerah penyebaran COVID-19 Indonesia (2021).

NF Kahar, L Hadjaratie, S Suhada, IR Padiku. (2019). Implementasi Data Mining Dalam Penentuan Tingkat Kemiskinan Menggunakan Fuzzy C-Means. Jambura Journal of Informatics, 1(1), 27-36.

Agustina, N., & Prihandoko, P. (2018). Perbandingan Algoritma K-Means dengan Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 2(3), 621-626.

Pamungkas, M. A. (2021). Perbandingan Fuzzy C-Means Dan K-Means Untuk Mengelompokkan Tingkat Buta Huruf Berdasarkan Provinsi Di Indonesia (Doctoral dissertation, Universitas Muhammadiyah Jember).




DOI: http://dx.doi.org/10.36448/expert.v13i1.3107

Refbacks

  • There are currently no refbacks.


EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi

Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA

Indexed by:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.