Prediksi Predikat Kelulusan Mahasiswa Menggunakan Naive Bayes dan Decision Tree pada Universitas XYZ

Agung Wibowo, Abdul Rohman

Abstract


The success of universities in managing learning standards can be seen from the number of students who can graduate with high predicates and on time. The graduation predicate of a student is influenced by several factors. This study aims to find out the profile of students who graduated with a set predicate and what are the factors that influence it. The method used in this study is the Cross Industry Standard Process for Data Mining CRISP-DM by utilizing the Naïve Bayes algritma in looking for graduate predicate patterns and Decision Tree in looking for causative factors. In the calculations using the NBC algorithm it was found that the profiles of students who passed the predicate were less satisfactory, satisfactory, very satisfactory and with praise . In the Desicion Tree calculation, the highest gain value is obtained at the attributes of IPK4, IPS5 and IPK5. The factors that most influence graduation are the cumulative achievement index in semesters 4 and 5 and the achievement index in semester 5. The pattern of graduating with predicate can be known from the second year of the incoming student to the third year. This research needs to be developed again by increasing the number of attributes and data, and it is necessary to create a system for determining student graduation predicates from the patterns that have been produced in order to help universities to improve the quality of student graduation in each period.

Keywords


Data Mining; Decision Tree; Graduation; Kelulusan; Naive Bayes

Full Text:

PDF

References


L. R. Rosmiati, "Aplikasi Berbasis Fuzzy C-Means Dalam Penentuan Predikat Kelulusan Mahasiswa," Jurnal Ilmiah Ilmu Komputer Fakultas, Vol. 2, P. 1–9, 2017.

V. W. T. A. C. M. L. A. M. M. Hairul Umam, "Analisis Perbandingan Algoritma C4.5 Dan Algoritma Naïve Bayes Untuk Prediksi Kelulusan Mahasiswa (Studi Kasus : Prodi Teknik Informatika Universitas Muhammadiyah Jember)," Repository Um Jember, Jember, 2019.

A. Y. N. Kunang and S. Murniati, "Implementasi Teknik Data Mining Untuk Memprediksi Tingkat Kelulusan Mahasiswa Pada Universitas Bina Darma Palembang," In Seminar Nasional Informatika , Yogyakarta, 2013.

K. D. E. T. Luthfi, Algoritma Data Mining, CV Andi Offset, 2009.

E. E. A. A. L. Turban, Decision Support System and Intelligent System, Yogyakarta: Penerbit Andi, 2005.

H. S. D. M. S. Mujib Ridwan, "Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier," Jurnal EECCIS, Pp. 59-64, 2013.

B. Santosa, Data Mining, Teknik Pemanfaatan Data Untuk Keperluan Bisnis : Teori Dan Aplikasi, Yogyakarta: Graha Ilmu, 2007.

J. D. G. S. Mcleod, Management Information System, Vol. 10th Ed., 10th Ed Pearsoneducation, Inc, 2007.

A. S. N. A. R. K. Y. I. M. Nurul Khasanah, "Prediksi Kelulusan Mahasiswa Dengan Metode Naive Bayes," Technologia, Vol. 13, P. 207, 2022.

Y. P. Arie Yandi Saputra, "Penerapan Teknik Klasifikasi Untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritma K-Nearest Neighbour," Techno.COM, Vol. 17, Pp. 395-403J, November 2018.

A. R. I. A. F. Dwi Astuti, "Penentuan Strategi Promosi Usaha Mikrokecil Dan Menengah (UMKM)Menggunakan Metode CRISP-DM Denganalgoritmak-Means Clustering," Journal of Informatics, Information System, Software Engineering and Applications (INISTA), Vol. 1, Pp. 60-72, 2019.

A. E. A. A. Karya Suhada, “Klasifikasi Predikat Tingkat Kelulusan Mahasiswa Program Studi Teknik Informatika Dengan Menggunakan Algoritma C4.5 (Studi Kasus: STMIK Rosma Karawang),” Dirgamaya:Jurnal Manajemen & Sistem Informas I, Pp. 14-27, 2021.

M. Kamil Dan W. Cholil, “Analisis Perbandingan Algoritma C4.5 Dan Naive Bayes Pada Lulusan Tepat Waktu Mahasiswa di Universitas Islam Negeri Raden Fatah Palembang,” Jurnal Informatika, Vol. Vol.7 No.2, Pp. 97-106, September 2020.

I. M. A. B. S. G. A. P. C. D. I. G. S. A. P. N. L. N. W. I Nyoman Rudy Hendrawan, "Klasifikasi Lama Studi Dan Predikat Kelulusan Mahasiswa Menggunakan Metode Naïve Bayes," EKSPLORA INFORMATIKA, Vol. 11, Pp. 50-56, 2021.

D. M. H. D. P. Agung Wibowo, "The Utilization of Naive Bayes and C.45 In Predicting the Timeliness of Students Graduation," Scientific Journal of Informatics, Vol. 7, Pp. 99-112, 2020.

A. I. H. Wilem Musu, "Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4.5," in Prosiding Seminar Ilmiah Sistem Informasi dan Teknologi Informasi, Makassar, 2021.




DOI: http://dx.doi.org/10.36448/expert.v12i2.2810

Article Metrics

Abstract view : 2 times
PDF - 2 times

Refbacks

  • There are currently no refbacks.


EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi

Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA

Indexed by:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.