Perhitungan Estimasi Upaya Pengembangan Software Pulsa Online dengan Fuzzy C-Means dan Fuzzy K-Means

Tia Tanjung, Fenty Ariani, Wiwin Susanty, Arnes Yuli Vandika

Abstract


Top-up can be done by prepaid and postpaid. Top-up at this time can also be done by way of online purchases. Credit with a prepaid system is a real-time top-up. Payments are made before the customer uses credit. Prepaid credit is different from postpaid which is not real-time and is done after the customer uses credit. Before credit can be used, it is necessary to create a credit server first. In this case, limited resources become an obstacle in completing the credit server creation which will later be used by credit users. Therefore, it is necessary to estimate the effort in the development of the server application, so that the estimation can be known, both in terms of resources, and processing time to estimates in terms of costs. In this case, the appropriate method should be used to overcome the obstacle and reduce the risk of software development. There are several ways to use the Fuzzy K-Mean and Fuzzy C-Means methods to complete the creation of impulse servers, perform analysis and interpretation, and provide information and actions for the quality of research output, education, and evaluation research. The result of the grouping comparison is to produce a derivative formula for the Fuzzy K-Mean and Fuzzy C-Means algorithms.

Keywords


Estimate Calculation; Internet Credit Software; Fuzzy C-Means; Fuzzy K-Means; Perhitungan Estimasi; Software Pulsa Online

Full Text:

PDF

References


Agusta, Y. 2007. K-Means - Penerapan, Permasalahan dan Metode Terkait. Jurnal Sistem dan Informatika Vol. 3 (Februari 2007): 47-60.

Prabantini, D., Sistem Pendukung dan Sistem Cerdas. Yogyakarta, 2005

Irwansyah, E., Faisal, M., (2015). Advanced Clustering Teori dan Praktek. Deepublish. Yogyakarta

Yuliani, N., Analisis Keakuratan Kode Diagnosis Penyakit Commotion Cerebri Pasien Rawat Inap Berdasarkan ICD-10 Rekam Medis Rumah Sakit Islam Klaten," INFOKES, vol. 1, Februari 2010.

Santoso, B. 2007. Data Mining: Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu

Sugiyono, Metode Penelitian Kuantitatif, Kualitatif dan R&D, Bandung: ALFABETA, 2008, cet. IV, hlm. 244.

Halim, Y. A., (2012, Desember) Zero - Center. [Online].http://zero/fisip.web.unair.ac.id/artikel_detail.69819- Sistem%20Data%20%28Database%29- Hierarchical%20Clustering.html.

Ingunn, B., Mevik Bjrnhelge, Ns Tormod. New Modifications and Applications of Fuzzy C-means Methodology, Computational Statistics, and Data Analysis, (52) 5, 2008, pp. 2403-241.

Prasetyo, E. 2013. Data Mining: Konsep dan Aplikasi Menggunakan Matlab. Jakarta: Andi Publisher.

Kusumadewi, S., dan Purnomo, H. 2004. Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu.

Kusumadewi S, 2002, Analisis Desai Sistem Fuzzy menggunakan Toolbox Matlab, Yogyakarta, Graha Ilmu.

Erlangga, E., & Dharmawan, Y. Y. (2018). Penentuan Penerima Kinerja Dosen Award melalui Metode Tsukamoto dengan Konsep Logika Fuzzy. Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika), 9(2).

Sari, H. L., & Suranti, D. (2016, August). Perbandingan Algoritma Fuzzy C-Means (FCM) Dan Algoritma Mixture Dalam Penclusteran Data Curah Hujan Kota Bengkulu. In Seminar Nasional Aplikasi Teknologi Informasi (SNATI).




DOI: http://dx.doi.org/10.36448/expert.v12i1.2471

Refbacks

  • There are currently no refbacks.


EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi

Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA

Indexed by:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.