Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif

Novanto Yudistira

Abstract


Peran sain data besar (Big Data) dan pembelajaran mesin dewasa ini tidak dapat terelakkan terutama untuk menganalisis data dan memberikan kecerdasan pada komputer agar bekerja secara otonom untuk menyelesaikan suatu pekerjaan tertentu. Perkembangan teknologi sensor dan internet membuat ketersediaan data tersebut melimpah yang selanjutnya dapat dilakukan analisis data dalam jumlah yang besar. Hal tersebut mempengaruhi bagaimana cara pandang komputasi dalam berbagai macam bidang baik ilmu alam maupun sosial. Data yang terkumpul dapat berupa beragam format dengan laju pertambahan yang cepat dan dinamis. Kita perlu algoritma atau model yang mumpuni untuk memahami dan menggali pengetahuan pada set data yang besar tersebut beserta rancangan modelnya yang secara otomatis mempunyai kemampuan memprediksi atau mendeteksi. Deep Learning dengan kapasitasnya yang besar serta hubungan korelasi antar neuron yang sangat banyak diharapkan mampu menjawab tantangan tersebut didukung oleh beberapa penelitian terkini pada penerapannnya di berbagai bidang keilmuan. Dalam paper ini akan dipaparkan contoh pemanfaatan Deep Learning pada Big Data yang telah kita lakukan pada pengenalan video aksi manusia pada Youtube, Segmentasi pada sel berskala besar, citra dada x-ray dan data time-series multi variabel hubungannya dengan pandemi COVID-19.

Keywords


Big Data; Deep Learning; Permasalahan Komprehensif

Full Text:

PDF

References


Syed, A., Gillela, K., & Venugopal, C. (2013). The future revolution on Big Data. Future, 2(6), 2446-2451.

Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqa, A., & Yaqoob, I. (2017). Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access, 5, 5247-5261.

Sagiroglu, S., & Sinanc, D. (2013, May). Big Data: A review. In 2013 international conference on collaboration technologies and systems (CTS) (pp. 42-47). IEEE.

Erl, T., Khattak, W., & Buhler, P. (2016). Big Data fundamentals: concepts, drivers & techniques. Prentice Hall Press.

Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013, January). Big Data: Issues and challenges moving forward. In 2013 46th Hawaii International Conference on System Sciences (pp. 995-1004). IEEE.

Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep Learning for IoT Big Data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials, 20(4), 2923-2960.

Twitter Search oleh Marc Smith. https://blogs.lse.ac.uk/impactofsocialsciences/2015/07/10/social-media-research-tools-overview/

Rodríguez, J. P., Fernández-Gracia, J., Thums, M., Hindell, M. A., Sequeira, A. M., Meekan, M. G., ... & Muelbert, M. (2017). Big Data analyses reveal patterns and drivers of the movements of southern elephant seals. Scientific reports, 7(1), 1-10.

Gaffney, D., & Matias, J. N. (2018). Caveat emptor, computational social science: Large-scale missing data in a widely-published Reddit corpus. PloS one, 13(7), e0200162.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. nature, 521(7553), 436-444.

Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition.

Berniker, M., & Kording, K. P. (2015). Deep networks for motor control functions. Frontiers in computational neuroscience, 9, 32.

Bae, H. S., Lee, H. J., & Lee, S. G. (2016, June). Voice recognition based on adaptive MFCC and Deep Learning. In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA) (pp. 1542-1546). IEEE.

Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., ... & Wiskott, L. (2012). Deep hierarchies in the primate visual cortex: What can we learn for computer vision?. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1847-1871.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.

IBM. https://www.ibm.com/blogs/systems/deep-learning-performance-breakthrough/

Soomro, K., Zamir, A. R., & Shah, M. (2012). UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402.

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural networks, 1(2), 119-130.

Yudistira, N., & Kurita, T. (2017). Gated spatio and temporal convolutional neural network for activity recognition: towards gated multimodal Deep Learning. EURASIP Journal on Image and Video Processing, 2017(1), 85.

Ichinose, T. M., & Iwane, A. H. (2017). Cytological analyses by advanced electron microscopy. In Cyanidioschyzon merolae (pp. 129-151). Springer, Singapore.

Yudistira, N., Kavitha, M., Itabashi, T., Iwane, A. H., & Kurita, T. (2020). prediction of Sequential organelles Localization under imbalance using A Balanced Deep U-net. Scientific Reports, 10(1), 1-11.

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., ... & Yuan, M. L. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), 497-506.

Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama, 323(13), 1239-1242.

M.L. HOLSHUE, C. DEBOLT, et al. (2020). First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 328, p.929–936.

Zhang, R., Li, Y., Zhang, A. L., Wang, Y., & Molina, M. J. (2020). Identifying airborne transmission as the dominant route for the spread of COVID-19. Proceedings of the National Academy of Sciences.

H. SHI, X. HAN, et al. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. 24 (4), p.425–434.

J.P. COHEN. (2020). COVID-19 Image Data Collection. https://github.com/ieee8023/COVID-chestxray-dataset.

X. WANG, Y. PENG, L. LU, Z. LU, M. BAGHERI, R.M. SUMMERS. 2017. Chestx-ray8: hospital scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2097

Novanto Yudistira. (2020) COVID-19 Growth Prediction using Multivariate Long Short-Term Memory. IAENG International Journal of Computer Science, vol. 47, no.4, pp829-837.

Yudistira, N., Sumitro, S. B., Nahas, A., & Riama, N. F. (2020). UV light influences covid-19 activity through Big Data: tradeoffs between northern subtropical, tropical, and southern subtropical countries. medRxiv.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual prediction with LSTM.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).

Yudistira, N., Sumitro, S. B., Nahas, A., & Riama, N. F. (2021). Learning where to look for COVID-19 growth: Multivariate analysis of COVID-19 cases over time using explainable convolution–LSTM. Applied Soft Computing, 109, 107469.




DOI: http://dx.doi.org/10.36448/expert.v11i2.2063

Refbacks

  • There are currently no refbacks.


EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi

Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA

Indexed by:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.