Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif
Abstract
Keywords
Full Text:
PDFReferences
Syed, A., Gillela, K., & Venugopal, C. (2013). The future revolution on Big Data. Future, 2(6), 2446-2451.
Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqa, A., & Yaqoob, I. (2017). Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access, 5, 5247-5261.
Sagiroglu, S., & Sinanc, D. (2013, May). Big Data: A review. In 2013 international conference on collaboration technologies and systems (CTS) (pp. 42-47). IEEE.
Erl, T., Khattak, W., & Buhler, P. (2016). Big Data fundamentals: concepts, drivers & techniques. Prentice Hall Press.
Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013, January). Big Data: Issues and challenges moving forward. In 2013 46th Hawaii International Conference on System Sciences (pp. 995-1004). IEEE.
Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep Learning for IoT Big Data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials, 20(4), 2923-2960.
Twitter Search oleh Marc Smith. https://blogs.lse.ac.uk/impactofsocialsciences/2015/07/10/social-media-research-tools-overview/
Rodríguez, J. P., Fernández-Gracia, J., Thums, M., Hindell, M. A., Sequeira, A. M., Meekan, M. G., ... & Muelbert, M. (2017). Big Data analyses reveal patterns and drivers of the movements of southern elephant seals. Scientific reports, 7(1), 1-10.
Gaffney, D., & Matias, J. N. (2018). Caveat emptor, computational social science: Large-scale missing data in a widely-published Reddit corpus. PloS one, 13(7), e0200162.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. nature, 521(7553), 436-444.
Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition.
Berniker, M., & Kording, K. P. (2015). Deep networks for motor control functions. Frontiers in computational neuroscience, 9, 32.
Bae, H. S., Lee, H. J., & Lee, S. G. (2016, June). Voice recognition based on adaptive MFCC and Deep Learning. In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA) (pp. 1542-1546). IEEE.
Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., ... & Wiskott, L. (2012). Deep hierarchies in the primate visual cortex: What can we learn for computer vision?. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1847-1871.
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.
IBM. https://www.ibm.com/blogs/systems/deep-learning-performance-breakthrough/
Soomro, K., Zamir, A. R., & Shah, M. (2012). UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402.
Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural networks, 1(2), 119-130.
Yudistira, N., & Kurita, T. (2017). Gated spatio and temporal convolutional neural network for activity recognition: towards gated multimodal Deep Learning. EURASIP Journal on Image and Video Processing, 2017(1), 85.
Ichinose, T. M., & Iwane, A. H. (2017). Cytological analyses by advanced electron microscopy. In Cyanidioschyzon merolae (pp. 129-151). Springer, Singapore.
Yudistira, N., Kavitha, M., Itabashi, T., Iwane, A. H., & Kurita, T. (2020). prediction of Sequential organelles Localization under imbalance using A Balanced Deep U-net. Scientific Reports, 10(1), 1-11.
Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., ... & Yuan, M. L. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), 497-506.
Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama, 323(13), 1239-1242.
M.L. HOLSHUE, C. DEBOLT, et al. (2020). First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 328, p.929–936.
Zhang, R., Li, Y., Zhang, A. L., Wang, Y., & Molina, M. J. (2020). Identifying airborne transmission as the dominant route for the spread of COVID-19. Proceedings of the National Academy of Sciences.
H. SHI, X. HAN, et al. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. 24 (4), p.425–434.
J.P. COHEN. (2020). COVID-19 Image Data Collection. https://github.com/ieee8023/COVID-chestxray-dataset.
X. WANG, Y. PENG, L. LU, Z. LU, M. BAGHERI, R.M. SUMMERS. 2017. Chestx-ray8: hospital scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2097
Novanto Yudistira. (2020) COVID-19 Growth Prediction using Multivariate Long Short-Term Memory. IAENG International Journal of Computer Science, vol. 47, no.4, pp829-837.
Yudistira, N., Sumitro, S. B., Nahas, A., & Riama, N. F. (2020). UV light influences covid-19 activity through Big Data: tradeoffs between northern subtropical, tropical, and southern subtropical countries. medRxiv.
Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual prediction with LSTM.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).
Yudistira, N., Sumitro, S. B., Nahas, A., & Riama, N. F. (2021). Learning where to look for COVID-19 growth: Multivariate analysis of COVID-19 cases over time using explainable convolution–LSTM. Applied Soft Computing, 109, 107469.
DOI: http://dx.doi.org/10.36448/expert.v11i2.2063
Refbacks
- There are currently no refbacks.
EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi
Published by Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Gedung M Lt.2 Pascasarjana Universitas Bandar Lampung
Jln Zainal Abidin Pagaralam No.89 Gedong Meneng, Rajabasa, Bandar Lampung,
LAMPUNG, INDONESIA
Indexed by:
This work is licensed under a Creative Commons Attribution 4.0 International License.