Implementasi Metode WAN pada Proses Preprocessing Ekstraksi Karakter Citra Digital

Dessy Tri Anggraeni, Condro Wibawa

Abstract


Character extraction in digital images is an interesting topic in the field of image processing. One of the steps in this processes is image preprocessing, that is preparing the image before extraction. There are many methods that can be used, one of which is the WAN method. The WAN method is a development of the Sauvola method, a method commonly used to improve the quality of text images. In an journal article, the WAN method provides better results than other methods for improving the quality of text images. In this research, this claim was tested by applying it as a preprocessing process in text character extraction using Optical Character Recognition (OCR) technology. The purpose of this research is to find out how well the WAN method is used compared to other methods. The result is that OCR technology give better result to an original image compare to image with preprocessing process, including using WAN method with a match rate of 52.33%. Meanwhile, if the preprocessing process is carried out first, the WAN method gives better results than the Sauvola method with a match rate of 26.93% for the WAN method and 23.27 for the Sauvola method.

Keywords


Citra Digital; Optical Character Recognition; Metode Sauvola; Metode WAN;

Full Text:

PDF

References


K. Ibnutama and G. Suryanata, "Ekstraksi Karakter Citra Menggunakan Optical Character Recognition Untuk Pencetakan Nomor Kendaraan Pada Struk Parkir," Jurnal Media Informatika Budidarma, vol. 4, no. 4, 2020.

G. Kumar and P. K. Bhatia, "A Detailed Review of Feature Extraction in Image Processing Systems," in Fourth International Conference on Advanced Computing & Communication Technologies, Rohtak, India, 2020.

M. D. N. Azis, S. A. Syakri and Z. K. Simbolon, "Rancang Bangun Aplikasi Perbaikan Citra Hasil Scan Dokumen Lama Dengan Metode Filtering," Jurnal Teknologi Rekayasa Informasi dan Komputer, vol. 1, no. 2, 2018.

K. Fatimah, Segmentasi Teks Naskah Kuno yang Lapuk Menggunakan Adaptive Local Thressholding, Surabaya: Departemen Teknik Komputer, Institut Teknologi Sepuluh November, 2018.

K. A. Hamad and M. Kaya, "A Detailed Analysis of Optical Character Recognition Technology," International Journal of Applied Mathematics, Electronics and Computers, vol. 4, no. 1, 2016.

M. Brisinello, M. P. M. Pul and T. Andelic, "Improving Optical Character Recognition Performance for Low Quality Images," in International Symposium ELMAR, IEEE, 2017., Zadar, 2017.

D. T. Anggraeni, "Perbaikan Citra Dokumen Hasil Pindai Menggunakan Metode Simple, Adaptive-Gaussian, dan Otsu Binarization Thresholding," Jurnal Manajemen Sistem Informasi dan Teknologi, vol. 11, no. 2, pp. 71-77, 2021.

C. Wibawa and D. T. Anggraeni, "Comparison of Image Segmentation Method in Image Character Extraction Preprocessing Using Optical Character Recognition," Jurnal Teknik Informatika (Jutif), vol. 4, no. 3, pp. 583-589, 2023.

W. A. Mustafa, H. Yazid and M. Jaafar, "An Improved Sauvola Approach on Document Images Binarization," Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 10, no. 2, pp. 43-50, 2018.

R. C. Gonzales and R. E. Woods, Digital Image Processing, Third, New Jersey, USA: Prentice Hall, 2008.

O. Team, "Transformasi Citra Biner Menggunakan Metode Thresholding Dan Otsu," OpenCV, [Online]. Available: https://docs.opencv.org/master/d7/d4d/tutorial. [Accessed 27 10 2023].

M. Hatta and I. G. Susrama, "Counting Sperma Aktif Menggunakan Metode Otsu Threshold Dan Local Adaptive Threshold," Teknika: Engineering and Sains Journal, vol. 1, no. 1, 2017.

J. Sauvola and M. Pietikäinen, "Adaptive Document Image Binarization," Pattern recognition, vol. 33, no. 2, pp. 225-236, 2000.

M. Rofi'i and D. R. Ningtias, "Local Adaptive Thresholding Menggunakan Metode Sauvola sebagai Tahapan Pra Pengolahan pada Data Citra Isyarat EKG (Elektrokardiogram)," Jurnal Teori dan Aplikasi Fisika, vol. 10, no. 1, 2022.

O. Team, "OpenCV - Tentang," OpenCV Team, 2023. [Online]. Available: https://opencv.org/about/. [Accessed 03 11 2023].

Nanonets, "How to OCR with Tesseract, OpenCV and Python," Nanonets, 2023. [Online]. Available: https://nanonets.com/blog/ocr-with-tesseract. [Accessed 06 11 2023].




DOI: http://dx.doi.org/10.36448/jsit.v14i2.3367

Refbacks

  • There are currently no refbacks.


About the JournalJournal PoliciesAuthor Information

Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika)
e-ISSN: 2686-181X
Website: http://jurnal.ubl.ac.id/index.php/explore
Email: explore@ubl.ac.id
Published by: Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Office: Jalan Zainal Abidin Pagar Alam No 89, Gedong Meneng, Bandar Lampung, Indonesia

This work is licensed under a Creative Commons Attribution 4.0 International License
Technical Support by:  RYE Education Hub