Pengujian Model Pengaruh Tata Kelola TI Terhadap Transformasi Digital dan Kinerja Asuransi C

Nazmi Robbiyani, Rahmat Mulyana, Lukman Abdurrahman

Abstract


Munculnya disrupsi teknologi baru, adanya perubahan perilaku pemangku kepentingan, serta munculnya pandemi COVID-19 membuat banyak organisasi incumbent melakukan akselerasi transformasi digital (TD). Namun banyak investasi terkait TD belum memenuhi harapan karena kurangnya praktik tata kelola yang baik. Penelitian sebelumnya menunjukkan adanya dampak tata kelola TI (TKTI) terhadap kinerja organisasi. Akan tetapi, praktik TKTI tradisional belum tentu efektif untuk mengawal TD. Masih sedikit penelitian mengenai pengaruh TKTI terhadap TD, serta mengeksplorasi pengaruh TD terhadap kinerja organisasi (KO). Oleh karena itu, tujuan dari penelitian ini adalah untuk menguji model pengaruh TKTI hibrida (tradisional dan agile/ adaptive) terhadap TD dan pengaruh DT terhadap KO pada perspektif balanced scorecard (BSC). Metode yang digunakan adalah survei dengan menyebarkan kuesioner online berskala likert kepada 11 peranan terkait TD di Asuransi C dan berhasil mendapatkan 52 responden. Data kemudian dianalisis menggunakan Structural Equation Modeling (SEM) dan aplikasi SmartPLS. Hasil penelitian menunjukkan bahwa mekanisme TKTI agile/ adaptive maupun tradisional berpengaruh positif terhadap TD dengan nilai t statistic 1.799/ 2.754. Begitu pun TD berpengaruh positif dan signifikan terhadap KO dengan nilai t statistic 13.001.


Keywords


IT Governance; Digital Transformation; Organizational Performance; SEM; SmartPLS; Insurance; Indonesia

Full Text:

PDF

References


S. Winasis and S. Riyanto, “Transformasi Digital di Industri Perbankan Indonesia: Impak pada Stress Kerja Karyawan,” IQTISHADIA J. Ekon. dan Perbank. Syariah, vol. 7, no. 1, pp. 55–64, 2020, doi: 10.1905/iqtishadia.v7i1.3162.

C. Gong and V. Ribiere, “Developing a unified definition of digital transformation,” Technovation, vol. 102, p. 102217, 2021.

A. Karagiannaki, G. Vergados, and K. Fouskas, “The Impact Of Digital Transformation In The Financial Services Industry: Insights From An Open Innovation Initiative In Fintech In Greece,” Assoc. Inf. Syst., pp. 1–13, 2017, [Online].

R. Mulyana, L. Rusu, and E. Perjons, “IT Governance Mechanisms Influence on Digital Transformation: A Systematic Literature Review,” Proc. 27th Annu. Am. Conf. Inf. Syst. (AMCIS 2021), pp. 1–10, 2021.

S. De Haes, L. Caluwe, T. Huygh, and A. Joshi, Governing digital transformation. 2020.

J. Jewer and N. van der Meulen, “Governance of Digital Transformation: A Review of the Literature,” Proc. 55th Hawaii Int. Conf. Syst. Sci., 2022.

S. Vejseli, A. Rossmann, and T. Connolly, “Agility matters! Agile mechanisms in IT governance and their impact on firm performance,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2020-Janua, pp. 5633–5642, 2020, doi: 10.24251/hicss.2020.692.

V. Gurbaxani and D. Dunkle, “Gearing up for successful digital transformation,” MIS Q. Exec., vol. 18, no. 3, pp. 209–220, 2019, doi: 10.17705/2msqe.00017.

R. S. Kaplan and D. P. Norton, “Putting the balanced scorecard to work,” Econ. Impact Knowl., pp. 315–324, 2009, doi: 10.1016/b978-0-7506-7009-8.50023-9.

S. de Haes and W. van Grembergen, “An Exploratory Study into IT Governance Implementations and its Impact on Business/IT Alignment,” Inf. Syst. Manag., vol. 26, no. 2, pp. 123–137, 2009, doi: 10.1080/10580530902794786.

R. S. Kaplan and D. P. Norton, “The balanced scorecard: Measures That drive performance,” Harv. Bus. Rev., vol. 83, no. 7–8, 2005.

M. H. Hanafiah, “Formative Vs. Reflective Measurement Model: Guidelines for Structural Equation Modeling Research,” Int. J. Anal. Appl., vol. 18, no. 5, pp. 876–889, 2020, doi: 10.28924/2291-8639-18-2020-876.

J. F. Hair, M. Sarstedt, L. Hopkins, and V. G. Kuppelwieser, “Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research,” Eur. Bus. Rev., vol. 26, no. 2, pp. 106–121, 2014, doi: 10.1108/EBR-10-2013-0128.

J. F. Hair, C. M. Ringle, and M. Sarstedt, “PLS-SEM: Indeed a silver bullet,” J. Mark. Theory Pract., vol. 19, no. 2, pp. 139–152, 2011, doi: 10.2753/MTP1069-6679190202.

K. K. K.-K. Wong, “28/05 - Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS,” Mark. Bull., vol. 24, no. 1, pp. 1–32, 2013, [Online].

J. F. Hair Jr, G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. P. Danks, and S. Ray, Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. 2021.

G. D. Garson, “Partial least squares. Regression and structural equation models.” Statistical Publishing Associates, 2016.




DOI: http://dx.doi.org/10.36448/jsit.v13i2.2712

Article Metrics

Abstract view : 20 times
PDF - 12 times

Refbacks

  • There are currently no refbacks.


About the JournalJournal PoliciesAuthor Information

Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika)
e-ISSN: 2686-181X
Website: http://jurnal.ubl.ac.id/index.php/explore
Email: explore@ubl.ac.id
Published by: Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Office: Jalan Zainal Abidin Pagar Alam No 89, Gedong Meneng, Bandar Lampung, Indonesia

This work is licensed under a Creative Commons Attribution 4.0 International License
Technical Support by:  RYE Education Hub