Lapisan Arsitektur Big Data Dalam Kajian Studi Pustaka

Ahmad Cucus, Robby Yuli Endra, Yuthsi Aprilinda, Yanuarius Yanu Dharmawan

Abstract


Era big data menjadi sebuah fenomena yang menarik untuk di bahas oleh kalangan peneliti dan pengembang perangkat lunak, pengembangan aplikasi dan konsep pengelolaan data semakin banyak varian dan dukungan menjadikan kerangka big data dapat masuk kesetiap lini kehidupan, data yang tersusun baik secara singkronus maupun asingkronus, melibatkan mesin dan manusia dalam pengumpulan data menjadikan teknologi ini semakin sejalan dengan konsep Revolusi Industri 4.0

 

Dalam berbagai kajian di sajikan konsep dan kerangka kerja Big Data, dari kajian tersebut beberapa peneliti menyajikan lapisan dalam arsitektur Big Data, di mana masing masing lapisan memberi input bagi lapisan lain untuk dapat di olah menjadi bentuk yang siap saji di masyarakat, lapisan yang tediri dari pengumpulan data, penyimpanan data, pemrosesan data serta Analisa data, sehingga pada lapisan aplikasi penggunaan data dapat lebih maksimal di rasakan oleh pengguna. Dalam makalah ini di sajikan beberapa bahan studi literature yang di rangkum untuk mendapatkan penjelasan mengenai lapisan arsitektur Big Data yang dapat di kembagkan dan di terapkan pada bidang bidang penelitian lain

 


Keywords


Big Data;Big Data Architecture

Full Text:

PDF

References


Alexandrov, N., & Alexandrov, V. (2015). Computational science research methods for science education at PG level. Procedia Computer Science, 51(1), 1685–1693. https://doi.org/10.1016/j.procs.2015.05.305

Aljehane, N. (2020, September 9). Big Data Analytics: Challenges and Opportunities. 2020 International Conference on Computing and Information Technology, ICCIT 2020. https://doi.org/10.1109/ICCIT-144147971.2020.9213765

Baker, O., & Thien, C. N. (2020). A New Approach to Use Big Data Tools to Substitute Unstructured Data Warehouse. 2020 IEEE Conference on Big Data and Analytics, ICBDA 2020, 26–31. https://doi.org/10.1109/ICBDA50157.2020.9289757

Benjelloun, F. Z., Lahcen, A. A., & Belfkih, S. (2015, May 11). An overview of big data opportunities, applications and tools. 2015 Intelligent Systems and Computer Vision, ISCV 2015. https://doi.org/10.1109/ISACV.2015.7105553

Chen, W., Li, Z., Liang, Y., Chen, J., & Zhu, W. (2016). An Asynchronous Distributed Data Collection Approach for Mobile Group Consumption. Proceedings - 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things, IIKI 2015, 19–24. https://doi.org/10.1109/IIKI.2015.11

Chung, Y., Kraska, T., Polyzotis, N., Tae, K. H., & Whang, S. E. (2020). Automated Data Slicing for Model Validation: A Big Data - AI Integration Approach. IEEE Transactions on Knowledge and Data Engineering, 32(12), 2284–2296. https://doi.org/10.1109/TKDE.2019.2916074

Costa, C., Charalampous, A., Konstantinidis, A., Zeinalipour-Yazti, D., & Mokbel, M. F. (2018). TBD-DP: Telco big data visual analytics with data postdiction. Proceedings - IEEE International Conference on Mobile Data Management, 2018-June, 280–281. https://doi.org/10.1109/MDM.2018.00050

Desai, V., & Dinesha, H. A. (2020, November 6). A Hybrid Approach to Data Pre-processing Methods. 2020 IEEE International Conference for Innovation in Technology, INOCON 2020. https://doi.org/10.1109/INOCON50539.2020.9298378

Devarakonda, R., Giansiracusa, M., & Kumar, J. (2019). Machine Learning and Social Media to Mine and Disseminate Big Scientific Data. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 5312–5315. https://doi.org/10.1109/BigData.2018.8622470

Elsayed, M., Abdelwahab, A., & Ahdelkader, H. (2019). A Proposed Framework for Improving Analysis of Big Unstructured Data in Social Media.

Erraissi, A., Banane, M., Belangour, A., & Azzouazi, M. (2020, October 26). Big Data Storage using Model Driven Engineering: From Big Data Meta-model to Cloudera PSM meta-model. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy, ICDABI 2020. https://doi.org/10.1109/ICDABI51230.2020.9325674

Evdokia, K., Konstantinou, & Nectarios, K. (2019). Towards a Multi-engine Query Optimizer forComplex SQL Queries on Big Data. 2019 IEEE International Conference on Big Data (Big Data, 59(11), 56–65. https://doi.org/10.1145/2934664

Ghane, K. (2020). Big data pipeline with ML-based and crowd sourced dynamically created and maintained columnar data warehouse for structured and unstructured big data. Proceedings - 3rd International Conference on Information and Computer Technologies, ICICT 2020, 60–67. https://doi.org/10.1109/ICICT50521.2020.00018

IEEE Computer Society, IEEE Computer Society. Technical Committee on the Internet, & Institute of Electrical and Electronics Engineers. (n.d.). 2016

IEEE 2nd International Conference on Collaboration and Internet Computing : IEEE CIC 2016 : proceedings : 1-3 November 2016, Pittsburgh, Pennsylvania, USA.

IEEE Staff. (2017). 2017 International Conference on Information Communication and Embedded Systems (ICICES). IEEE.

Il-Kyu Ha, & Bong-Hyun Bac. (2020). Effective Garbage Data Filtering Algorithm for SNS Big Data Processing by Machine Learning. International Conference on Artificial Intelligence in Information and Communication (ICAIIC).

Institute of Electrical and Electronics Engineers. (n.d.). 2019 IEEE International Conference on Computer Science and Educational Informatization (CSEI).

Institute of Electrical and Electronics Engineers, IEEE Communications Society;, Denshi Jōhō Tsūshin Gakkai (Japan). Tsūshin Sosaieti, & Han’guk

T’ongsin Hakhoe. (n.d.). ICUFN 2019 : the 11th International Conference on Ubiquitous and Future Networks : July 2 (Tue.)-July 5 (Fri.) 2019, Zagreb, Croatia.

Juneja, A., & Das, N. N. (2019). Big Data Quality Framework: Pre-Processing Data in Weather Monitoring Application. Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel Computing: Trends, Prespectives and Prospects, COMITCon 2019, 559–563. https://doi.org/10.1109/COMITCon.2019.8862267

Kenji, N., Joichiro, K., & Saneyasu, Y. (2017). 1A Study on Big Data I/O Performance with Modern Storage Systems. 017 IEEE International Conference on Big Data (BIGDATA), 278–289. https://doi.org/10.1109/HPCA.2011.5749736

Leung, C. K., Chen, Y., Shang, S., & Deng, D. (2020). Big Data Science on COVID-19 Data. Proceedings - 2020 IEEE 14th International Conference on Big Data Science and Engineering, BigDataSE 2020, 14–21. https://doi.org/10.1109/BigDataSE50710.2020.00010

Li, J., Xu, Z., Jiang, Y., & Zhang, R. (2014). The overview of big data storage and management. Proceedings of 2014 IEEE 13th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC 2014, 510–513. https://doi.org/10.1109/ICCI-CC.2014.6921508

Luchinin, A. S., Malygin, I. V., Starikov, S. I., & Markov, M. V. (2019). Synchronization of elements of the system for collecting data separated by long distances. 2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications, SYNCHROINFO 2019, 1–4. https://doi.org/10.1109/SYNCHROINFO.2019.8813921

Man, Y., Kui, L., Liwei, Z., & Chenhong, Z. (2018). Research on Big Data Storage Model of Oilfield Assay Data Based on MongoDB. 2018 IEEE 4th International Conference on Computer and Communications.

Nguyen, M. C., & Won, H. S. (2016). Data storage adapter in big data platform. Proceedings - 8th International Conference on Database Theory and Application, DTA 2015, 6–9. https://doi.org/10.1109/DTA.2015.9

Panda, M. (2017). Big Data in Health Care: A Mobile Based Solution. Proceedings of the 2017 International Conference on Big Data Analytics and Computational Intelligence.

Roh, Y., Heo, G., & Whang, S. E. (2019). A Survey on Data Collection for Machine Learning. IEEE Transactions on Knowledge and Data Engineering, PP(c), 1. https://doi.org/10.1109/TKDE.2019.2946162

Roy, S., Menapace, W., Oei, S., Luijten, B., Fini, E., Saltori, C., Huijben, I., Chennakeshava, N., Mento, F., Sentelli, A., Peschiera, E., Trevisan, R., Maschietto, G., Torri, E., Inchingolo, R., Smargiassi, A., Soldati, G., Rota, P., Passerini, A., … Demi, L. (2020). Deep Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound. IEEE Transactions on Medical Imaging, 39(8), 2676–2687. https://doi.org/10.1109/TMI.2020.2994459

Sakineti, S. (2018). Protagonist of Big Data and Predictive Analytics using data analytics. Proceedings of the International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS-2018) .

Savanur, S., & Shreedhara, K. S. (2017). Automated data validation for data warehouse testing. 2016 International Conference on Electrical, Electronics, Communication, Computer and Optimization Techniques, ICEECCOT 2016, 223–226. https://doi.org/10.1109/ICEECCOT.2016.7955219

Shan, C., Mamoulis, N., Li, G., Cheng, R., Huang, Z., & Zheng, Y. (2018). A Crowdsourcing Framework for Collecting Tabular Data (Vol. 14, Issue 8).

Suyash Mishra. (2017). Structured and Unstructured Big Data Analytics. International Conference on Current Trends in Computer, Electrical, Electronics and Communication (ICCTCEEC) - 2017 : 8-9, September 2017.

Takase, T. (2019). Evaluation of Stratified Validation in Neural Network Training with Imbalanced Data. UTC from IEEE Xplore.

Tan, Y. (2020). How to Effectively Infiltrate Emotional Education in Primary School Chinese Teaching from Perspective of Big Data. Proceedings - 2020 International Conference on Computers, Information Processing and Advanced Education, CIPAE 2020, 138–141. https://doi.org/10.1109/CIPAE51077.2020.00044

Thiruthanigesan, K., & Thiruchchelvan, N. (2017). Data Verification and Validation Process in the Management System Development. Middle-East Journal of Scientific Research, 25(5), 902–911. https://doi.org/10.5829/idosi.mejsr.2017.902.911

Vidal, M. E., & Jozashoori, S. (2019). Semantic data integration techniques for transforming big biomedical data into actionable knowledge. Proceedings - IEEE Symposium on Computer-Based Medical Systems, 2019-June, 563–566. https://doi.org/10.1109/CBMS.2019.00116

Xie, C., Gao, J., & Tao, C. (2017). Big data validation case study. Proceedings - 3rd IEEE International Conference on Big Data Computing Service and Applications, BigDataService 2017, 281–286. https://doi.org/10.1109/BigDataService.2017.44

Xing, W., & Bei, Y. (2020). Medical Health Big Data Classification Based on KNN Classification Algorithm. IEEE Access, 8, 28808–28819. https://doi.org/10.1109/ACCESS.2019.2955754

Zhu, J. Y., Tang, B., & Li, V. O. K. (2019). A five-layer architecture for big data processing and analytics A five-layer architecture for big data processing and analytics 39. In Int. J. Big Data Intelligence (Vol. 6, Issue 1). https://github.com/amplab-extras/




DOI: http://dx.doi.org/10.36448/jsit.v12i1.1974

Article Metrics

Abstract view : 4 times
PDF - 5 times

Refbacks

  • There are currently no refbacks.


About the JournalJournal PoliciesAuthor Information

Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika)
e-ISSN: 2686-181X
Website: http://jurnal.ubl.ac.id/index.php/explore
Email: explore@ubl.ac.id
Published by: Pusat Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Bandar Lampung
Office: Jalan Zainal Abidin Pagar Alam No 89, Gedong Meneng, Bandar Lampung, Indonesia

This work is licensed under a Creative Commons Attribution 4.0 International License
Technical Support by:  RYE Education Hub